December  2015, 8(6): 1165-1211. doi: 10.3934/dcdss.2015.8.1165

Periodic orbits for a generalized Friedmann-Robertson-Walker Hamiltonian system in dimension $6$

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

Received  July 2015 Revised  September 2015 Published  December 2015

A generalized Friedmann-Robertson-Walker Hamiltonian system is studied in dimension $6$. The averaging theory is the tool used to provide sufficient conditions on the six parameters of the system which guarantee the existence of continuous families of period orbits parameterized by the energy.
Citation: Fatima Ezzahra Lembarki, Jaume Llibre. Periodic orbits for a generalized Friedmann-Robertson-Walker Hamiltonian system in dimension $6$. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1165-1211. doi: 10.3934/dcdss.2015.8.1165
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin, Reading, Masachusets, 1978.

[2]

C. Belomte, D. Bocaaletti and G. Pucacco, On the orbit structure of the logarithm potential, Astrophys. J., 669 (2007), 202-217.

[3]

E. Calzeta and C. E. Hasi, Chaotic Friedmann-Robertson-Walker cosmology, Class. Quantum Gravity, 10 (1993), 1825-1841. doi: 10.1088/0264-9381/10/9/022.

[4]

S. W. Hawkings, Arrow of time in cosmology, Phys. Rev. D, 32 (1985), 2489-2495. doi: 10.1103/PhysRevD.32.2489.

[5]

F. Lembarki and J. Llibre, Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension $6$, Nonlinear Dyn., 76 (2014), 1807-1819. doi: 10.1007/s11071-014-1249-9.

[6]

J. Llibre and A. Makhlouf, Periodic orbits of the generalized Friedmann-Robertson-Walker Hamiltonian systems, Astrophys, 344 (2013), 46-50.

[7]

D. Merrit and M. Valluri, Chaos and mixing in triaxial stellar systems, Astrophys, 471 (1996), 82-105.

[8]

D. Page, Will entroy decrease if the universe recollapses?, Phys. Rev. D, 32 (1991), 2496-2499. doi: 10.1103/PhysRevD.32.2496.

[9]

Y. Papaphilippou and J. Laskar, Frequency map analysis and global dynamics in a galactic potential with two degrees of freedom, Astron. Astrophys., 307 (1996), 427-449.

[10]

Y. Papaphilippou and J. Laskar, Global dynamics of triaxial galactic models though frequency analysis, Astron. Astrophys., 329 (1998), 451-481.

[11]

G. Pucacco, D. Boccaletti and C. Belmonte, Quantitative predictions with detuned normal forms, Celest. Mech. Dyn. Astron., 102 (2008), 163-176. doi: 10.1007/s10569-008-9141-x.

[12]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer-Verlag, 1996. doi: 10.1007/978-3-642-61453-8.

[13]

H. S. Zhao, C. M. Carollo and T. De Zeeuw, Can galactic nuclei be non-axisymmetric? The parameter space of power-law discs, Mon. Not. R. Astron. Soc., 304 (1999), 457-464.

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin, Reading, Masachusets, 1978.

[2]

C. Belomte, D. Bocaaletti and G. Pucacco, On the orbit structure of the logarithm potential, Astrophys. J., 669 (2007), 202-217.

[3]

E. Calzeta and C. E. Hasi, Chaotic Friedmann-Robertson-Walker cosmology, Class. Quantum Gravity, 10 (1993), 1825-1841. doi: 10.1088/0264-9381/10/9/022.

[4]

S. W. Hawkings, Arrow of time in cosmology, Phys. Rev. D, 32 (1985), 2489-2495. doi: 10.1103/PhysRevD.32.2489.

[5]

F. Lembarki and J. Llibre, Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension $6$, Nonlinear Dyn., 76 (2014), 1807-1819. doi: 10.1007/s11071-014-1249-9.

[6]

J. Llibre and A. Makhlouf, Periodic orbits of the generalized Friedmann-Robertson-Walker Hamiltonian systems, Astrophys, 344 (2013), 46-50.

[7]

D. Merrit and M. Valluri, Chaos and mixing in triaxial stellar systems, Astrophys, 471 (1996), 82-105.

[8]

D. Page, Will entroy decrease if the universe recollapses?, Phys. Rev. D, 32 (1991), 2496-2499. doi: 10.1103/PhysRevD.32.2496.

[9]

Y. Papaphilippou and J. Laskar, Frequency map analysis and global dynamics in a galactic potential with two degrees of freedom, Astron. Astrophys., 307 (1996), 427-449.

[10]

Y. Papaphilippou and J. Laskar, Global dynamics of triaxial galactic models though frequency analysis, Astron. Astrophys., 329 (1998), 451-481.

[11]

G. Pucacco, D. Boccaletti and C. Belmonte, Quantitative predictions with detuned normal forms, Celest. Mech. Dyn. Astron., 102 (2008), 163-176. doi: 10.1007/s10569-008-9141-x.

[12]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer-Verlag, 1996. doi: 10.1007/978-3-642-61453-8.

[13]

H. S. Zhao, C. M. Carollo and T. De Zeeuw, Can galactic nuclei be non-axisymmetric? The parameter space of power-law discs, Mon. Not. R. Astron. Soc., 304 (1999), 457-464.

[1]

Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177

[2]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[3]

Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949

[4]

Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451

[5]

Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331

[6]

Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005

[7]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[8]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[9]

Jorge Rebaza. Bifurcations and periodic orbits in variable population interactions. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2997-3012. doi: 10.3934/cpaa.2013.12.2997

[10]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[11]

Corey Shanbrom. Periodic orbits in the Kepler-Heisenberg problem. Journal of Geometric Mechanics, 2014, 6 (2) : 261-278. doi: 10.3934/jgm.2014.6.261

[12]

Luca Dieci, Timo Eirola, Cinzia Elia. Periodic orbits of planar discontinuous system under discretization. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2743-2762. doi: 10.3934/dcdsb.2018103

[13]

Rossella Bartolo. Periodic orbits on Riemannian manifolds with convex boundary. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 439-450. doi: 10.3934/dcds.1997.3.439

[14]

Piotr Oprocha, Xinxing Wu. On averaged tracing of periodic average pseudo orbits. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4943-4957. doi: 10.3934/dcds.2017212

[15]

Jeremias Epperlein, Vladimír Švígler. On arbitrarily long periodic orbits of evolutionary games on graphs. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1895-1915. doi: 10.3934/dcdsb.2018187

[16]

Manfred Denker, Samuel Senti, Xuan Zhang. Fluctuations of ergodic sums on periodic orbits under specification. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4665-4687. doi: 10.3934/dcds.2020197

[17]

Carlos Arnoldo Morales. A note on periodic orbits for singular-hyperbolic flows. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 615-619. doi: 10.3934/dcds.2004.11.615

[18]

Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197

[19]

Viktor L. Ginzburg, Başak Z. Gürel. On the generic existence of periodic orbits in Hamiltonian dynamics. Journal of Modern Dynamics, 2009, 3 (4) : 595-610. doi: 10.3934/jmd.2009.3.595

[20]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (158)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]