
Previous Article
Prediction method based on optimization theory and its application
 DCDSS Home
 This Issue

Next Article
Research on the optimal initial shunt strategy of Jiuzhaigou based on the optimization model
Intelligent control model and its simulation of flue temperature in coke oven
1.  College of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China, China, China 
2.  Intelligent Systems and Biomedical Robotics Group, School of Computing, University of Portsmouth, Portsmouth PO1 3HE, United Kingdom, United Kingdom, United Kingdom 
References:
[1] 
S. Appari, R. Tanaka, C. Y. Li, S. Kudo, J. Hayashi, M. J. Vinod, H. Watanabe and K. Norinaga, Predicting the temperature and reactant concentration profiles of reacting flow in the partial oxidation of hot coke oven gas using detailed chemistry and a onedimensional flow model,, Chemical Engineering Journal, 266 (2015), 82. doi: 10.1016/j.cej.2014.12.041. 
[2] 
W. H. Chen, M. R. Lin, T. S. Leu and S. W. Du, An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstock,, International Journal of Hydrogen Energy, 36 (2011), 11727. doi: 10.1016/j.ijhydene.2011.06.049. 
[3] 
S. K. Das, K. M. Godiwalla and S. P. Mehrotra, A mathematical model for prediction of physical properties of the coke oven charge during carbonization,, High Temperature Materials and Processe, 26 (2007), 43. 
[4] 
R. Fabbri, R. Johnson, S. Novo and C. Núñez, On linearquadratic dissipative control processes with timevarying coefficients,, Discrete and Continuous Dynamical Systems  Series S (DCDSS), 33 (2013), 193. doi: 10.3934/dcds.2013.33.193. 
[5] 
X. W. Gao and Y. P. Zhao, The fuzzy adaptive PID in the simulation of coke oven temperature control,, Journal of Northeastern University, 27 (2006), 1067. 
[6] 
Y. N. Guo, D. W. Gong and J. Cheng, Coke oven heating temperature fuzzy control system,, in Proceedings of the IEEE International Conference on Control Applications, (2004), 195. 
[7] 
D. R. Jenkins and M. R. Mahoney, Programmed heating of coke ovens for increased coke size,, Ironmaking and Steelmaking, 37 (2010), 570. doi: 10.1179/030192310X12706364542948. 
[8] 
G. Z. Jiang, T. T. He, G. F. Li and J. Y. Kong, Intelligent control of coke oven,, in Proceedings of International Conference on Logistics Systems and Intelligent Management, (2010), 512. doi: 10.1109/ICLSIM.2010.5461371. 
[9] 
J. L. Karst, E. Petit and J. P. Gaillet, Optimization of coke oven charging by use of a mathematical model,, Revue de Metallurgie. Cahiers D'Informations Techniques, 101 (2004), 447. doi: 10.1051/metal:2004186. 
[10] 
E. T. Ko, S. K. Hwang and J. S. Lee, A combustion control modeling of coke oven by swarmbased fuzzy system,, in Proceedings of SICEICASE International Joint Conferenc, (2006), 2503. doi: 10.1109/SICE.2006.314682. 
[11] 
Q. Lei, J. Y. Li, M. Wu and Y. He, The application of multiobjective differential evolution algorithm in the combustion process of coke oven,, in Proceedings of the 32nd Chinese Control Conference, (2013), 8395. 
[12] 
Q. Lei and M. Wu, Fuzzy optimization control of the temperature for the heating process in coke oven based on coevolution,, in Proceedings of the 26th Chinese Control Conference, (2007), 420. 
[13] 
Q. Lei, M. Wu, W. H. Cao and S. Y. Hou, An intelligent integrated method for softsensing of the flue temperature in coke oven and its application,, Journal of East China University of Science and Technology (Natural Science Edition), 32 (2013), 726. 
[14] 
G. F. Li, Y. S. Gu, J. Y. Kong, G. Z. Jiang and L. X. Xie, Intelligent diagnosis of coke oven heating production,, Sensors and Transducers, 16 (2012), 226. 
[15] 
G. F. Li, Y. He, G. Z. Jiang, J. Y. Kong and L. X. Xie, Research on the airfuel ratio intelligent control method for coke oven combustion energy saving,, in Proceedings of 2nd International Conference on Frontiers of Manufacturing and Design Science, (2011), 2873. doi: 10.4028/www.scientific.net/AMM.121126.2873. 
[16] 
G. F. Li, P. X. Qu, J. Y. Kong, G. Z. Jiang, L. X. Xie, P. Gao, Z. H. Gao and Y. He, Coke oven intelligent integrated control system,, Applied Mathematics and Information Sciences, 7 (2013), 1043. 
[17] 
G. F. Li, W. T. Xiao, G. Z. Jiang, J. Y. Kong, J. Liu, Y. K. Zhang and F. W. Cheng, Softsensing model of coke oven flue temperature,, Sensors and Transducers, 161 (2013), 265. 
[18] 
G. F. Li, Y. S. Gu, J. Y. Kong, G. Z. Jiang and L. X. Xie, Intelligent control of coke oven airfuel ratio,, International Review on Computers and Software, 7 (2012), 1262. 
[19] 
G. F. Li, J. Y. Kong, G. Z. Jiang, L. X. Xie, Z. G. Jiang and G. Zhao, Airfuel ratio intelligent control in coke oven combustion process,, INFORMATIONAn International Interdisciplinary Journal, 15 (2012), 4487. 
[20] 
W. Lin, Y. H. Feng and X. X. Zhang, Numerical study of volatiles production, fluid flow and heat transfer in coke ovens,, Applied Thermal Engineerin, 81 (2015), 353. doi: 10.1016/j.applthermaleng.2015.02.056. 
[21] 
W. S. Lin, L. Zhang and A. Z. Gu, Effects of hydrogen content on nitrogen expansion liquefaction process of coke oven gas,, Cryogenics, 61 (2014), 149. doi: 10.1016/j.cryogenics.2014.01.006. 
[22] 
Q. Lü and E. Zuazua, Robust null controllability for heat equations with unknown switching control mode,, Discrete and Continuous Dynamical Systems  Series S (DCDSS), 34 (2014), 4183. doi: 10.3934/dcds.2014.34.4183. 
[23] 
G. Nicolas and V. R. Tatiana, Prediction of coke oven wall pressure,, Fuel, 139 (2015), 692. 
[24] 
K. P. Prachethan, A. Kinlekar, K. Mallikarjuna and M. Ranjan, Coal pyrolysis and kinetic model for nonrecovery coke ovens,, Ironmaking and Steelmaking, 38 (2011), 608. 
[25] 
R. Razzaq, C. S. Li and S. J. Zhang, Coke oven gas: Availability, properties, purification and utilization in china,, Fuel, 113 (2013), 287. doi: 10.1016/j.fuel.2013.05.070. 
[26] 
D. L. Russell, Control via decoupling of a class of second order linear hybrid systems,, Discrete and Continuous Dynamical Systems  Series S (DCDSS), 7 (2014), 1321. doi: 10.3934/dcdss.2014.7.1321. 
[27] 
G. Sergei and M. Yuri, A simple nonlinear model of immune response,, Chaos, 16 (2013), 125. doi: 10.1016/S09600779(02)002321. 
[28] 
K. Tsuda, Reduction in coke oven heat consumption through improved fuel valve adjustment,, in Proceedings of IFAC Workshop on Automation in the Mining, (2012), 132. 
[29] 
H. T. Wang, W. J. Yang, J. H. Zhou, Z. H. Wang, J. Z. Liu and K. F. Cen, Calculation and analysis on evaporation and mixing characteristics of droplets in high temperature flue,, Journal of Zhejiang University (Engineering Science), 45 (2011), 878. 
[30] 
W. Wang, M. Wu, W. H. Cao and Q. Le, Fuzzyexpert control based on combination grey prediction model for flue temperature in coke oven,, Control and Decision, 25 (2010), 185. 
[31] 
M. Wu, Q. Lei and W. H. Cao, Flue temperature fuzzy control for coke oven heating process based on multioperative modes analysis,, Journal of Central South University (Science and Technology), 39 (2008), 155. 
[32] 
M. Wu, Q. Lei, W. H. Cao and J. H. She, Integrated soft sensing of cokeoven temperature,, Control Engineering Practice, 19 (2011), 1116. doi: 10.1016/j.conengprac.2011.06.001. 
[33] 
M. Wu, Y. X. Liu, W. H. Cao and Q. Lei, Research and application of intelligent optimization control system for coke oven heating combustion process,, Journal of metallurgical automatio, 30 (2006), 25. 
[34] 
W. T. Xiao, G. F. Li, H. H. Liu, G. Z. Jiang, Z. Liu, D. S. Chen, W. L. Ding, W. Miao and Z. Li, Soft sensor system of coke oven flue temperature based on CBR and PCARBFNN,, Computer Modelling and New Technologies, 18 (2014), 951. 
[35] 
Z. L. Zhang, B. Q. Lin, G. M. Li and Q. Ye, Coke oven gas explosion suppression,, Safety Sciencel, 55 (2013), 81. doi: 10.1016/j.ssci.2012.12.006. 
[36] 
J. Y. Zhang, X. H. Zhang, Z. Chen and L. Li, Thermodynamic and kinetic model of reforming cokeoven gas with steam,, Energy, 35 (2010), 3103. doi: 10.1016/j.energy.2010.03.050. 
[37] 
M. D. Zheng and F. Q. Ning, Research on coke oven heating control system,, Journal of Dalian University Technology, 41 (2001), 442. 
show all references
References:
[1] 
S. Appari, R. Tanaka, C. Y. Li, S. Kudo, J. Hayashi, M. J. Vinod, H. Watanabe and K. Norinaga, Predicting the temperature and reactant concentration profiles of reacting flow in the partial oxidation of hot coke oven gas using detailed chemistry and a onedimensional flow model,, Chemical Engineering Journal, 266 (2015), 82. doi: 10.1016/j.cej.2014.12.041. 
[2] 
W. H. Chen, M. R. Lin, T. S. Leu and S. W. Du, An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstock,, International Journal of Hydrogen Energy, 36 (2011), 11727. doi: 10.1016/j.ijhydene.2011.06.049. 
[3] 
S. K. Das, K. M. Godiwalla and S. P. Mehrotra, A mathematical model for prediction of physical properties of the coke oven charge during carbonization,, High Temperature Materials and Processe, 26 (2007), 43. 
[4] 
R. Fabbri, R. Johnson, S. Novo and C. Núñez, On linearquadratic dissipative control processes with timevarying coefficients,, Discrete and Continuous Dynamical Systems  Series S (DCDSS), 33 (2013), 193. doi: 10.3934/dcds.2013.33.193. 
[5] 
X. W. Gao and Y. P. Zhao, The fuzzy adaptive PID in the simulation of coke oven temperature control,, Journal of Northeastern University, 27 (2006), 1067. 
[6] 
Y. N. Guo, D. W. Gong and J. Cheng, Coke oven heating temperature fuzzy control system,, in Proceedings of the IEEE International Conference on Control Applications, (2004), 195. 
[7] 
D. R. Jenkins and M. R. Mahoney, Programmed heating of coke ovens for increased coke size,, Ironmaking and Steelmaking, 37 (2010), 570. doi: 10.1179/030192310X12706364542948. 
[8] 
G. Z. Jiang, T. T. He, G. F. Li and J. Y. Kong, Intelligent control of coke oven,, in Proceedings of International Conference on Logistics Systems and Intelligent Management, (2010), 512. doi: 10.1109/ICLSIM.2010.5461371. 
[9] 
J. L. Karst, E. Petit and J. P. Gaillet, Optimization of coke oven charging by use of a mathematical model,, Revue de Metallurgie. Cahiers D'Informations Techniques, 101 (2004), 447. doi: 10.1051/metal:2004186. 
[10] 
E. T. Ko, S. K. Hwang and J. S. Lee, A combustion control modeling of coke oven by swarmbased fuzzy system,, in Proceedings of SICEICASE International Joint Conferenc, (2006), 2503. doi: 10.1109/SICE.2006.314682. 
[11] 
Q. Lei, J. Y. Li, M. Wu and Y. He, The application of multiobjective differential evolution algorithm in the combustion process of coke oven,, in Proceedings of the 32nd Chinese Control Conference, (2013), 8395. 
[12] 
Q. Lei and M. Wu, Fuzzy optimization control of the temperature for the heating process in coke oven based on coevolution,, in Proceedings of the 26th Chinese Control Conference, (2007), 420. 
[13] 
Q. Lei, M. Wu, W. H. Cao and S. Y. Hou, An intelligent integrated method for softsensing of the flue temperature in coke oven and its application,, Journal of East China University of Science and Technology (Natural Science Edition), 32 (2013), 726. 
[14] 
G. F. Li, Y. S. Gu, J. Y. Kong, G. Z. Jiang and L. X. Xie, Intelligent diagnosis of coke oven heating production,, Sensors and Transducers, 16 (2012), 226. 
[15] 
G. F. Li, Y. He, G. Z. Jiang, J. Y. Kong and L. X. Xie, Research on the airfuel ratio intelligent control method for coke oven combustion energy saving,, in Proceedings of 2nd International Conference on Frontiers of Manufacturing and Design Science, (2011), 2873. doi: 10.4028/www.scientific.net/AMM.121126.2873. 
[16] 
G. F. Li, P. X. Qu, J. Y. Kong, G. Z. Jiang, L. X. Xie, P. Gao, Z. H. Gao and Y. He, Coke oven intelligent integrated control system,, Applied Mathematics and Information Sciences, 7 (2013), 1043. 
[17] 
G. F. Li, W. T. Xiao, G. Z. Jiang, J. Y. Kong, J. Liu, Y. K. Zhang and F. W. Cheng, Softsensing model of coke oven flue temperature,, Sensors and Transducers, 161 (2013), 265. 
[18] 
G. F. Li, Y. S. Gu, J. Y. Kong, G. Z. Jiang and L. X. Xie, Intelligent control of coke oven airfuel ratio,, International Review on Computers and Software, 7 (2012), 1262. 
[19] 
G. F. Li, J. Y. Kong, G. Z. Jiang, L. X. Xie, Z. G. Jiang and G. Zhao, Airfuel ratio intelligent control in coke oven combustion process,, INFORMATIONAn International Interdisciplinary Journal, 15 (2012), 4487. 
[20] 
W. Lin, Y. H. Feng and X. X. Zhang, Numerical study of volatiles production, fluid flow and heat transfer in coke ovens,, Applied Thermal Engineerin, 81 (2015), 353. doi: 10.1016/j.applthermaleng.2015.02.056. 
[21] 
W. S. Lin, L. Zhang and A. Z. Gu, Effects of hydrogen content on nitrogen expansion liquefaction process of coke oven gas,, Cryogenics, 61 (2014), 149. doi: 10.1016/j.cryogenics.2014.01.006. 
[22] 
Q. Lü and E. Zuazua, Robust null controllability for heat equations with unknown switching control mode,, Discrete and Continuous Dynamical Systems  Series S (DCDSS), 34 (2014), 4183. doi: 10.3934/dcds.2014.34.4183. 
[23] 
G. Nicolas and V. R. Tatiana, Prediction of coke oven wall pressure,, Fuel, 139 (2015), 692. 
[24] 
K. P. Prachethan, A. Kinlekar, K. Mallikarjuna and M. Ranjan, Coal pyrolysis and kinetic model for nonrecovery coke ovens,, Ironmaking and Steelmaking, 38 (2011), 608. 
[25] 
R. Razzaq, C. S. Li and S. J. Zhang, Coke oven gas: Availability, properties, purification and utilization in china,, Fuel, 113 (2013), 287. doi: 10.1016/j.fuel.2013.05.070. 
[26] 
D. L. Russell, Control via decoupling of a class of second order linear hybrid systems,, Discrete and Continuous Dynamical Systems  Series S (DCDSS), 7 (2014), 1321. doi: 10.3934/dcdss.2014.7.1321. 
[27] 
G. Sergei and M. Yuri, A simple nonlinear model of immune response,, Chaos, 16 (2013), 125. doi: 10.1016/S09600779(02)002321. 
[28] 
K. Tsuda, Reduction in coke oven heat consumption through improved fuel valve adjustment,, in Proceedings of IFAC Workshop on Automation in the Mining, (2012), 132. 
[29] 
H. T. Wang, W. J. Yang, J. H. Zhou, Z. H. Wang, J. Z. Liu and K. F. Cen, Calculation and analysis on evaporation and mixing characteristics of droplets in high temperature flue,, Journal of Zhejiang University (Engineering Science), 45 (2011), 878. 
[30] 
W. Wang, M. Wu, W. H. Cao and Q. Le, Fuzzyexpert control based on combination grey prediction model for flue temperature in coke oven,, Control and Decision, 25 (2010), 185. 
[31] 
M. Wu, Q. Lei and W. H. Cao, Flue temperature fuzzy control for coke oven heating process based on multioperative modes analysis,, Journal of Central South University (Science and Technology), 39 (2008), 155. 
[32] 
M. Wu, Q. Lei, W. H. Cao and J. H. She, Integrated soft sensing of cokeoven temperature,, Control Engineering Practice, 19 (2011), 1116. doi: 10.1016/j.conengprac.2011.06.001. 
[33] 
M. Wu, Y. X. Liu, W. H. Cao and Q. Lei, Research and application of intelligent optimization control system for coke oven heating combustion process,, Journal of metallurgical automatio, 30 (2006), 25. 
[34] 
W. T. Xiao, G. F. Li, H. H. Liu, G. Z. Jiang, Z. Liu, D. S. Chen, W. L. Ding, W. Miao and Z. Li, Soft sensor system of coke oven flue temperature based on CBR and PCARBFNN,, Computer Modelling and New Technologies, 18 (2014), 951. 
[35] 
Z. L. Zhang, B. Q. Lin, G. M. Li and Q. Ye, Coke oven gas explosion suppression,, Safety Sciencel, 55 (2013), 81. doi: 10.1016/j.ssci.2012.12.006. 
[36] 
J. Y. Zhang, X. H. Zhang, Z. Chen and L. Li, Thermodynamic and kinetic model of reforming cokeoven gas with steam,, Energy, 35 (2010), 3103. doi: 10.1016/j.energy.2010.03.050. 
[37] 
M. D. Zheng and F. Q. Ning, Research on coke oven heating control system,, Journal of Dalian University Technology, 41 (2001), 442. 
[1] 
Bin Li, Kok Lay Teo, ChengChew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems  B, 2011, 16 (4) : 11011117. doi: 10.3934/dcdsb.2011.16.1101 
[2] 
Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861880. doi: 10.3934/jimo.2010.6.861 
[3] 
Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415432. doi: 10.3934/jgm.2013.5.415 
[4] 
K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499510. doi: 10.3934/mbe.2005.2.499 
[5] 
H. W. J. Lee, Y. C. E. Lee, Kar Hung Wong. Differential equation approximation and enhancing control method for finding the PID gain of a quartercar suspension model with statedependent ODE. Journal of Industrial & Management Optimization, 2017, 13 (5) : 126. doi: 10.3934/jimo.2019055 
[6] 
Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 14571466. doi: 10.3934/proc.2011.2011.1457 
[7] 
Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems  S, 2018, 11 (1) : 5976. doi: 10.3934/dcdss.2018004 
[8] 
Aliki D. Muradova, Georgios K. Tairidis, Georgios E. Stavroulakis. Adaptive NeuroFuzzy vibration control of a smart plate. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 251271. doi: 10.3934/naco.2017017 
[9] 
K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133148. doi: 10.3934/jimo.2005.1.133 
[10] 
Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619627. doi: 10.3934/proc.2013.2013.619 
[11] 
Yubai Liu, Xueshan Gao, Fuquan Dai. Implementation of Mamdami fuzzy control on a multiDOF twowheel inverted pendulum robot. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 12511266. doi: 10.3934/dcdss.2015.8.1251 
[12] 
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437446. doi: 10.3934/proc.2013.2013.437 
[13] 
Michael Basin, Pablo RodriguezRamirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275282. doi: 10.3934/naco.2011.1.275 
[14] 
Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 413435. doi: 10.3934/naco.2012.2.413 
[15] 
Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems  S, 2018, 11 (6) : 11031119. doi: 10.3934/dcdss.2018063 
[16] 
Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linearquadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems  B, 2007, 8 (2) : 261277. doi: 10.3934/dcdsb.2007.8.261 
[17] 
Russell Johnson, Carmen Núñez. Remarks on linearquadratic dissipative control systems. Discrete & Continuous Dynamical Systems  B, 2015, 20 (3) : 889914. doi: 10.3934/dcdsb.2015.20.889 
[18] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
[19] 
Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple timedelays. Journal of Industrial & Management Optimization, 2014, 10 (2) : 413441. doi: 10.3934/jimo.2014.10.413 
[20] 
Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375396. doi: 10.3934/mcrf.2013.3.375 
2017 Impact Factor: 0.561
Tools
Metrics
Other articles
by authors
[Back to Top]