• Previous Article
    Statistical query-based rule derivation system by backward elimination algorithm
  • DCDS-S Home
  • This Issue
  • Next Article
    Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations
December  2015, 8(6): 1331-1339. doi: 10.3934/dcdss.2015.8.1331

Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term

1. 

Dpto. de Matemáticas, Universidad de Cádiz, Polígono del Río San Pedro s/n 11510 Puerto Real, Cádiz, Spain, Spain

Received  June 2015 Revised  August 2015 Published  December 2015

Memory effect in diffusion-reaction equation with finite memory transport plays an important role in physical, biological and chemical sciences. In this work we consider a Fisher equation, which has a nonlinear convection term with finite memory transport, from the point of view of Lie classical reductions. By using a direct method we obtain some travelling waves solutions. Furthermore, by using the multipliers method, we derive some nontrivial conservation laws for this equation.
Citation: María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331
References:
[1]

S. A. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Physical Review letters, 78 (1997), 2869.  doi: 10.1103/PhysRevLett.78.2869.  Google Scholar

[2]

S. C. Anco and G. Bluman, Direct constrution method for conservation laws for partial differential equations Part II: General treatment,, Euro. J. of Applied Mathematics, 13 (2002), 567.  doi: 10.1017/S0956792501004661.  Google Scholar

[3]

M. S. Bruzón, M. L. Gandarias and N. H. Ibragimov, Self-adjoint sub-classes of generalized thin film equations,, J. Math. Anal. Appl., 357 (2009), 307.  doi: 10.1016/j.jmaa.2009.04.028.  Google Scholar

[4]

J. M. Burgers, A mathematical model illustrating the theory of turbulence,, Adv. Appl. Mech., 1 (1948), 171.   Google Scholar

[5]

C. R. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation,, Acad. Sci. Paris, (1895), 431.   Google Scholar

[6]

N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierachies,, Journal of Nonlinear Mathematical Physics, 16 (2009), 489.  doi: 10.1142/S1402925109000509.  Google Scholar

[7]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[8]

M. L. Gandarias, Weak self-adjoint differential equations,, J. Phys. A: Math. Theor., 44 (2011).   Google Scholar

[9]

M. L. Gandarias, Weak self-adjointness and conservation laws for a porous medium equation,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2342.  doi: 10.1016/j.cnsns.2011.10.020.  Google Scholar

[10]

M. L. Gandarias, Nonlinear self-adjointness through differential substitutions,, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3523.  doi: 10.1016/j.cnsns.2014.02.013.  Google Scholar

[11]

M. L. Gandarias, M. S. Bruzón and M. Rosa, Nonlinear self-adjointness and conservation laws for a generalized Fisher equation,, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 1600.  doi: 10.1016/j.cnsns.2012.11.023.  Google Scholar

[12]

N. H. Ibragimov, A new conservation theorem,, J. Math. Anal. Appl., 333 (2007), 311.  doi: 10.1016/j.jmaa.2006.10.078.  Google Scholar

[13]

N. H. Ibragimov, Quasi-self-adjoint differential equations,, Arch. ALGA, 4 (2007), 55.   Google Scholar

[14]

N. H. Ibragimov, Nonlinear self-adjointness and conservation laws,, J. Phys. A: Math.Theor., 44 (2011).  doi: 10.1088/1751-8113/44/43/432002.  Google Scholar

[15]

N. H. Ibragimov, M. Torrisi and R. Tracina, Self-adjointness and conservation laws of a generalized Burgers equation,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/14/145201.  Google Scholar

[16]

S. Kar, S. K. BaniK and D. S. Ray, Exact solutions of Fisher and Burgers equations with finite transport memory,, J. Phys. A: Math. Gen., 36 (2003), 2771.  doi: 10.1088/0305-4470/36/11/308.  Google Scholar

[17]

A. Mishra and R. Kumar, Memory effects in Fisher equation with nonlinear convection term,, Physics Letters A, 376 (2012), 1833.  doi: 10.1016/j.physleta.2012.04.037.  Google Scholar

[18]

M. Torrisi and R. Tracina, Quasi self-adjointness of a class of third order nonlinear dispersive equations,, Nonlinear Analysis: Real World Applications, 14 (2013), 1496.  doi: 10.1016/j.nonrwa.2012.10.013.  Google Scholar

[19]

M. Wang, X. Li and J. Zhang, The $\frac{G'}G$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,, Phys. Lett. A, 372 (2008), 417.  doi: 10.1016/j.physleta.2007.07.051.  Google Scholar

show all references

References:
[1]

S. A. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Physical Review letters, 78 (1997), 2869.  doi: 10.1103/PhysRevLett.78.2869.  Google Scholar

[2]

S. C. Anco and G. Bluman, Direct constrution method for conservation laws for partial differential equations Part II: General treatment,, Euro. J. of Applied Mathematics, 13 (2002), 567.  doi: 10.1017/S0956792501004661.  Google Scholar

[3]

M. S. Bruzón, M. L. Gandarias and N. H. Ibragimov, Self-adjoint sub-classes of generalized thin film equations,, J. Math. Anal. Appl., 357 (2009), 307.  doi: 10.1016/j.jmaa.2009.04.028.  Google Scholar

[4]

J. M. Burgers, A mathematical model illustrating the theory of turbulence,, Adv. Appl. Mech., 1 (1948), 171.   Google Scholar

[5]

C. R. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation,, Acad. Sci. Paris, (1895), 431.   Google Scholar

[6]

N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierachies,, Journal of Nonlinear Mathematical Physics, 16 (2009), 489.  doi: 10.1142/S1402925109000509.  Google Scholar

[7]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[8]

M. L. Gandarias, Weak self-adjoint differential equations,, J. Phys. A: Math. Theor., 44 (2011).   Google Scholar

[9]

M. L. Gandarias, Weak self-adjointness and conservation laws for a porous medium equation,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2342.  doi: 10.1016/j.cnsns.2011.10.020.  Google Scholar

[10]

M. L. Gandarias, Nonlinear self-adjointness through differential substitutions,, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3523.  doi: 10.1016/j.cnsns.2014.02.013.  Google Scholar

[11]

M. L. Gandarias, M. S. Bruzón and M. Rosa, Nonlinear self-adjointness and conservation laws for a generalized Fisher equation,, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 1600.  doi: 10.1016/j.cnsns.2012.11.023.  Google Scholar

[12]

N. H. Ibragimov, A new conservation theorem,, J. Math. Anal. Appl., 333 (2007), 311.  doi: 10.1016/j.jmaa.2006.10.078.  Google Scholar

[13]

N. H. Ibragimov, Quasi-self-adjoint differential equations,, Arch. ALGA, 4 (2007), 55.   Google Scholar

[14]

N. H. Ibragimov, Nonlinear self-adjointness and conservation laws,, J. Phys. A: Math.Theor., 44 (2011).  doi: 10.1088/1751-8113/44/43/432002.  Google Scholar

[15]

N. H. Ibragimov, M. Torrisi and R. Tracina, Self-adjointness and conservation laws of a generalized Burgers equation,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/14/145201.  Google Scholar

[16]

S. Kar, S. K. BaniK and D. S. Ray, Exact solutions of Fisher and Burgers equations with finite transport memory,, J. Phys. A: Math. Gen., 36 (2003), 2771.  doi: 10.1088/0305-4470/36/11/308.  Google Scholar

[17]

A. Mishra and R. Kumar, Memory effects in Fisher equation with nonlinear convection term,, Physics Letters A, 376 (2012), 1833.  doi: 10.1016/j.physleta.2012.04.037.  Google Scholar

[18]

M. Torrisi and R. Tracina, Quasi self-adjointness of a class of third order nonlinear dispersive equations,, Nonlinear Analysis: Real World Applications, 14 (2013), 1496.  doi: 10.1016/j.nonrwa.2012.10.013.  Google Scholar

[19]

M. Wang, X. Li and J. Zhang, The $\frac{G'}G$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,, Phys. Lett. A, 372 (2008), 417.  doi: 10.1016/j.physleta.2007.07.051.  Google Scholar

[1]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[2]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[3]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[4]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[5]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[6]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

[9]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[10]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[11]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[12]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[13]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[16]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[17]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[18]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[19]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[20]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (8)

[Back to Top]