-
Previous Article
Statistical query-based rule derivation system by backward elimination algorithm
- DCDS-S Home
- This Issue
-
Next Article
Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations
Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term
1. | Dpto. de Matemáticas, Universidad de Cádiz, Polígono del Río San Pedro s/n 11510 Puerto Real, Cádiz, Spain, Spain |
References:
[1] |
S. A. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Physical Review letters, 78 (1997), 2869.
doi: 10.1103/PhysRevLett.78.2869. |
[2] |
S. C. Anco and G. Bluman, Direct constrution method for conservation laws for partial differential equations Part II: General treatment,, Euro. J. of Applied Mathematics, 13 (2002), 567.
doi: 10.1017/S0956792501004661. |
[3] |
M. S. Bruzón, M. L. Gandarias and N. H. Ibragimov, Self-adjoint sub-classes of generalized thin film equations,, J. Math. Anal. Appl., 357 (2009), 307.
doi: 10.1016/j.jmaa.2009.04.028. |
[4] |
J. M. Burgers, A mathematical model illustrating the theory of turbulence,, Adv. Appl. Mech., 1 (1948), 171.
|
[5] |
C. R. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation,, Acad. Sci. Paris, (1895), 431. Google Scholar |
[6] |
N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierachies,, Journal of Nonlinear Mathematical Physics, 16 (2009), 489.
doi: 10.1142/S1402925109000509. |
[7] |
R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[8] |
M. L. Gandarias, Weak self-adjoint differential equations,, J. Phys. A: Math. Theor., 44 (2011). Google Scholar |
[9] |
M. L. Gandarias, Weak self-adjointness and conservation laws for a porous medium equation,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2342.
doi: 10.1016/j.cnsns.2011.10.020. |
[10] |
M. L. Gandarias, Nonlinear self-adjointness through differential substitutions,, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3523.
doi: 10.1016/j.cnsns.2014.02.013. |
[11] |
M. L. Gandarias, M. S. Bruzón and M. Rosa, Nonlinear self-adjointness and conservation laws for a generalized Fisher equation,, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 1600.
doi: 10.1016/j.cnsns.2012.11.023. |
[12] |
N. H. Ibragimov, A new conservation theorem,, J. Math. Anal. Appl., 333 (2007), 311.
doi: 10.1016/j.jmaa.2006.10.078. |
[13] |
N. H. Ibragimov, Quasi-self-adjoint differential equations,, Arch. ALGA, 4 (2007), 55. Google Scholar |
[14] |
N. H. Ibragimov, Nonlinear self-adjointness and conservation laws,, J. Phys. A: Math.Theor., 44 (2011).
doi: 10.1088/1751-8113/44/43/432002. |
[15] |
N. H. Ibragimov, M. Torrisi and R. Tracina, Self-adjointness and conservation laws of a generalized Burgers equation,, J. Phys. A: Math. Theor., 44 (2011).
doi: 10.1088/1751-8113/44/14/145201. |
[16] |
S. Kar, S. K. BaniK and D. S. Ray, Exact solutions of Fisher and Burgers equations with finite transport memory,, J. Phys. A: Math. Gen., 36 (2003), 2771.
doi: 10.1088/0305-4470/36/11/308. |
[17] |
A. Mishra and R. Kumar, Memory effects in Fisher equation with nonlinear convection term,, Physics Letters A, 376 (2012), 1833.
doi: 10.1016/j.physleta.2012.04.037. |
[18] |
M. Torrisi and R. Tracina, Quasi self-adjointness of a class of third order nonlinear dispersive equations,, Nonlinear Analysis: Real World Applications, 14 (2013), 1496.
doi: 10.1016/j.nonrwa.2012.10.013. |
[19] |
M. Wang, X. Li and J. Zhang, The $\frac{G'}G$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,, Phys. Lett. A, 372 (2008), 417.
doi: 10.1016/j.physleta.2007.07.051. |
show all references
References:
[1] |
S. A. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Physical Review letters, 78 (1997), 2869.
doi: 10.1103/PhysRevLett.78.2869. |
[2] |
S. C. Anco and G. Bluman, Direct constrution method for conservation laws for partial differential equations Part II: General treatment,, Euro. J. of Applied Mathematics, 13 (2002), 567.
doi: 10.1017/S0956792501004661. |
[3] |
M. S. Bruzón, M. L. Gandarias and N. H. Ibragimov, Self-adjoint sub-classes of generalized thin film equations,, J. Math. Anal. Appl., 357 (2009), 307.
doi: 10.1016/j.jmaa.2009.04.028. |
[4] |
J. M. Burgers, A mathematical model illustrating the theory of turbulence,, Adv. Appl. Mech., 1 (1948), 171.
|
[5] |
C. R. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation,, Acad. Sci. Paris, (1895), 431. Google Scholar |
[6] |
N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierachies,, Journal of Nonlinear Mathematical Physics, 16 (2009), 489.
doi: 10.1142/S1402925109000509. |
[7] |
R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[8] |
M. L. Gandarias, Weak self-adjoint differential equations,, J. Phys. A: Math. Theor., 44 (2011). Google Scholar |
[9] |
M. L. Gandarias, Weak self-adjointness and conservation laws for a porous medium equation,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2342.
doi: 10.1016/j.cnsns.2011.10.020. |
[10] |
M. L. Gandarias, Nonlinear self-adjointness through differential substitutions,, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3523.
doi: 10.1016/j.cnsns.2014.02.013. |
[11] |
M. L. Gandarias, M. S. Bruzón and M. Rosa, Nonlinear self-adjointness and conservation laws for a generalized Fisher equation,, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 1600.
doi: 10.1016/j.cnsns.2012.11.023. |
[12] |
N. H. Ibragimov, A new conservation theorem,, J. Math. Anal. Appl., 333 (2007), 311.
doi: 10.1016/j.jmaa.2006.10.078. |
[13] |
N. H. Ibragimov, Quasi-self-adjoint differential equations,, Arch. ALGA, 4 (2007), 55. Google Scholar |
[14] |
N. H. Ibragimov, Nonlinear self-adjointness and conservation laws,, J. Phys. A: Math.Theor., 44 (2011).
doi: 10.1088/1751-8113/44/43/432002. |
[15] |
N. H. Ibragimov, M. Torrisi and R. Tracina, Self-adjointness and conservation laws of a generalized Burgers equation,, J. Phys. A: Math. Theor., 44 (2011).
doi: 10.1088/1751-8113/44/14/145201. |
[16] |
S. Kar, S. K. BaniK and D. S. Ray, Exact solutions of Fisher and Burgers equations with finite transport memory,, J. Phys. A: Math. Gen., 36 (2003), 2771.
doi: 10.1088/0305-4470/36/11/308. |
[17] |
A. Mishra and R. Kumar, Memory effects in Fisher equation with nonlinear convection term,, Physics Letters A, 376 (2012), 1833.
doi: 10.1016/j.physleta.2012.04.037. |
[18] |
M. Torrisi and R. Tracina, Quasi self-adjointness of a class of third order nonlinear dispersive equations,, Nonlinear Analysis: Real World Applications, 14 (2013), 1496.
doi: 10.1016/j.nonrwa.2012.10.013. |
[19] |
M. Wang, X. Li and J. Zhang, The $\frac{G'}G$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,, Phys. Lett. A, 372 (2008), 417.
doi: 10.1016/j.physleta.2007.07.051. |
[1] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[2] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[3] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123 |
[4] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[5] |
Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307 |
[6] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124 |
[7] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[8] |
Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049 |
[9] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[10] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[11] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[12] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[13] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[14] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[15] |
Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020459 |
[16] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[17] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[18] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[19] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[20] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]