December  2015, 8(6): 1341-1356. doi: 10.3934/dcdss.2015.8.1341

Statistical query-based rule derivation system by backward elimination algorithm

1. 

Dept. of Mathematical Engineering, Yildiz Technical University, Istanbul, 34210, Turkey, Turkey

Received  July 2015 Revised  September 2015 Published  December 2015

Computers play a serious role in human life, especially web-based applications running twenty four hours per day. These applications are based on relational database management system and they receive many queries from the users. These queries are executed in the commercial systems one by one without any consideration of past experiences and data analysis. The execution of queries can be faster if some rules were derived from the past queries. In this paper, we propose a statistical query-based rule derivation system by the backward elimination algorithm, which analysis the data based on the past queries in order to derive new rules, and then it uses these rules for the execution of new queries. The computational results are presented and analysed that the system is very efficient and promising.
Citation: Ayla Sayli, Ayse Oncu Sarihan. Statistical query-based rule derivation system by backward elimination algorithm. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1341-1356. doi: 10.3934/dcdss.2015.8.1341
References:
[1]

J. Bakus and M. S. Kamel, Higher order feature selection for text classification, Knowledge and Information Systems, 9 (2006), 468-491. doi: 10.1007/s10115-005-0209-6.

[2]

S. Ceri, P. Fraternali, S. Paraboschi and L. Tanca, Automatic generation of production rules for integrity maintenance, ACM Transactions on Database Systems, 19 (1994), 367-422. doi: 10.1145/185827.185828.

[3]

U. S. Chakravarthy, J. Grant and J. Minker, Logic-based approach to semantic query optimization, ACM Transactions on Database Systems), 15 (1990), 162-207. doi: 10.1145/78922.78924.

[4]

K. C. Chan and A. K. Wong, A statistical technique for extracting classificatory knowledge from databases, Discovery in Databases, (1991), 107-124.

[5]

F. De Marchi, S. Lopes and J.-M. Petit, Efficient algorithms for mining inclusion dependencies, in Advances in Database Technology-EDBT 2002, {2287}, Springer, 2002, 464-476. doi: 10.1007/3-540-45876-X_30.

[6]

D. Genest and M. Chein, A content-search information retrieval process based on conceptual graphs, Knowledge and Information Systems, 8 (2005), 292-309. doi: 10.1007/s10115-004-0179-0.

[7]

G. Graefe and D. J. DeWitt, The EXODUS Optimizer Generator, vol. 16, ACM, 1987.

[8]

M. M. Hammer and D. J. McLeod, Semantic integrity in a relational data base system, in Proceedings of the 1st International Conference on Very Large Data Bases, 1975, 25-47. doi: 10.1145/1282480.1282483.

[9]

C.-N. Hsu and C. A. Knoblock, Learning Database Abstractions for Query Reformulation, University of Southern California, Information Sciences Institute, 1993.

[10]

I. K. Ibrahim, V. Dignum, W. Winiwarter and E. Weippl, Logic based approach to semantic query transformation for knowledge management applications, Proceeding of the International Conference on Knowledge Management, Berlin, Springer, 2002.

[11]

I. Imam, R. Michalski and L. Kerschberg, Discovering attribute dependence in databases by integrating symbolic learning and statistical analysis techniques, in Proceeding of the AAAI-93 Workshop on Knowledge Discovery in Databases, Washington DC, 1993.

[12]

N. S. Ishakbeyoǧlu and Z. M. Özsoyoǧlu, On the maintenance of implication integrity constraints, in Database and Expert Systems Applications, Springer, 1993, 221-232.

[13]

J. J. King, Quist: A system for semantic query optimization in relational databases, in Proceedings of the seventh international conference on Very Large Data Bases-Volume 7, VLDB Endowment, 1981, 510-517.

[14]

S.-G. Lee, L. J. Henschen, J. Chun and T. Lee, Identifying relevant constraints for semantic query optimization, Information and Software Technology, 42 (2000), 899-914. doi: 10.1016/S0950-5849(00)00121-X.

[15]

G. Piatetsky-Shapiro and C. Matheus, Measuring data dependencies in large databases, in Knowledge Discovery in Databases Workshop, 1993, 162-173.

[16]

V. Pudi and J. R. Haritsa, Generalized closed itemsets for association rule mining, in Data Engineering, 2003. Proceedings. 19th International Conference on, IEEE, 2003, 714-716.

[17]

A. Sayli and A. Elibol, A rule rectification algorithm on semantic query optimisation, in 17th International Conference on Systems Research, Informatics and Cybernetics Focus on Advances in Decision Technology and Intelligent Information Systems, 6 (2005), 12-16.

[18]

A. Sayli and A. Elibol, Rule evaluation algorithm for semantic query optimisation, Applied Mathematics and Information Sciences, 7 (2013), 1773-1781. doi: 10.12785/amis/070515.

[19]

A. Sayli and B. Gokce, The use of SQO rules in DMLs, in Computers and Communications, 2004. Proceedings. ISCC 2004. Ninth International Symposium on, vol. 1, IEEE, 2004, 146-151. doi: 10.1109/ISCC.2004.1358396.

[20]

A. Sayli and B. Lowden, A fast transformation method to semantic query optimisation, in International Database Engineering and Applications Symposium, IEEE, 1997, 319-326. doi: 10.1109/IDEAS.1997.625701.

[21]

A. Sayli and B. Lowden, Ensuring rule consistency in the presence of db updates, in Proc. XII International Symposium on Computer and Information Sciences, Turkey, 1997.

[22]

A. Sayli and O. Uysal, A dynamic self-learning method for semantic query optimisation, International Journal of Technology, Policy and Management, 8 (2008), 126-147. doi: 10.1504/IJTPM.2008.017216.

[23]

S. Shekhar, B. Hamidzadeh, A. Kohli and M. Coyle, Learning transformation rules for semantic query optimization: A data-driven approach, IEEE Transactions on Knowledge & Data Engineering, 5 (2002), 950-964. doi: 10.1109/69.250077.

[24]

M. Siegel, E. Sciore and S. Salveter, A method for automatic rule derivation to support semantic query optimization, ACM Transactions on Database Systems, 17 (1992), 563-600. doi: 10.1145/146931.146932.

[25]

C. T. Yu and W. Sun, Automatic knowledge acquisition and maintenance for semantic query optimization, IEEE Transactions on Knowledge and Data Engineering, 1 (1989), 362-375. doi: 10.1109/69.87981.

show all references

References:
[1]

J. Bakus and M. S. Kamel, Higher order feature selection for text classification, Knowledge and Information Systems, 9 (2006), 468-491. doi: 10.1007/s10115-005-0209-6.

[2]

S. Ceri, P. Fraternali, S. Paraboschi and L. Tanca, Automatic generation of production rules for integrity maintenance, ACM Transactions on Database Systems, 19 (1994), 367-422. doi: 10.1145/185827.185828.

[3]

U. S. Chakravarthy, J. Grant and J. Minker, Logic-based approach to semantic query optimization, ACM Transactions on Database Systems), 15 (1990), 162-207. doi: 10.1145/78922.78924.

[4]

K. C. Chan and A. K. Wong, A statistical technique for extracting classificatory knowledge from databases, Discovery in Databases, (1991), 107-124.

[5]

F. De Marchi, S. Lopes and J.-M. Petit, Efficient algorithms for mining inclusion dependencies, in Advances in Database Technology-EDBT 2002, {2287}, Springer, 2002, 464-476. doi: 10.1007/3-540-45876-X_30.

[6]

D. Genest and M. Chein, A content-search information retrieval process based on conceptual graphs, Knowledge and Information Systems, 8 (2005), 292-309. doi: 10.1007/s10115-004-0179-0.

[7]

G. Graefe and D. J. DeWitt, The EXODUS Optimizer Generator, vol. 16, ACM, 1987.

[8]

M. M. Hammer and D. J. McLeod, Semantic integrity in a relational data base system, in Proceedings of the 1st International Conference on Very Large Data Bases, 1975, 25-47. doi: 10.1145/1282480.1282483.

[9]

C.-N. Hsu and C. A. Knoblock, Learning Database Abstractions for Query Reformulation, University of Southern California, Information Sciences Institute, 1993.

[10]

I. K. Ibrahim, V. Dignum, W. Winiwarter and E. Weippl, Logic based approach to semantic query transformation for knowledge management applications, Proceeding of the International Conference on Knowledge Management, Berlin, Springer, 2002.

[11]

I. Imam, R. Michalski and L. Kerschberg, Discovering attribute dependence in databases by integrating symbolic learning and statistical analysis techniques, in Proceeding of the AAAI-93 Workshop on Knowledge Discovery in Databases, Washington DC, 1993.

[12]

N. S. Ishakbeyoǧlu and Z. M. Özsoyoǧlu, On the maintenance of implication integrity constraints, in Database and Expert Systems Applications, Springer, 1993, 221-232.

[13]

J. J. King, Quist: A system for semantic query optimization in relational databases, in Proceedings of the seventh international conference on Very Large Data Bases-Volume 7, VLDB Endowment, 1981, 510-517.

[14]

S.-G. Lee, L. J. Henschen, J. Chun and T. Lee, Identifying relevant constraints for semantic query optimization, Information and Software Technology, 42 (2000), 899-914. doi: 10.1016/S0950-5849(00)00121-X.

[15]

G. Piatetsky-Shapiro and C. Matheus, Measuring data dependencies in large databases, in Knowledge Discovery in Databases Workshop, 1993, 162-173.

[16]

V. Pudi and J. R. Haritsa, Generalized closed itemsets for association rule mining, in Data Engineering, 2003. Proceedings. 19th International Conference on, IEEE, 2003, 714-716.

[17]

A. Sayli and A. Elibol, A rule rectification algorithm on semantic query optimisation, in 17th International Conference on Systems Research, Informatics and Cybernetics Focus on Advances in Decision Technology and Intelligent Information Systems, 6 (2005), 12-16.

[18]

A. Sayli and A. Elibol, Rule evaluation algorithm for semantic query optimisation, Applied Mathematics and Information Sciences, 7 (2013), 1773-1781. doi: 10.12785/amis/070515.

[19]

A. Sayli and B. Gokce, The use of SQO rules in DMLs, in Computers and Communications, 2004. Proceedings. ISCC 2004. Ninth International Symposium on, vol. 1, IEEE, 2004, 146-151. doi: 10.1109/ISCC.2004.1358396.

[20]

A. Sayli and B. Lowden, A fast transformation method to semantic query optimisation, in International Database Engineering and Applications Symposium, IEEE, 1997, 319-326. doi: 10.1109/IDEAS.1997.625701.

[21]

A. Sayli and B. Lowden, Ensuring rule consistency in the presence of db updates, in Proc. XII International Symposium on Computer and Information Sciences, Turkey, 1997.

[22]

A. Sayli and O. Uysal, A dynamic self-learning method for semantic query optimisation, International Journal of Technology, Policy and Management, 8 (2008), 126-147. doi: 10.1504/IJTPM.2008.017216.

[23]

S. Shekhar, B. Hamidzadeh, A. Kohli and M. Coyle, Learning transformation rules for semantic query optimization: A data-driven approach, IEEE Transactions on Knowledge & Data Engineering, 5 (2002), 950-964. doi: 10.1109/69.250077.

[24]

M. Siegel, E. Sciore and S. Salveter, A method for automatic rule derivation to support semantic query optimization, ACM Transactions on Database Systems, 17 (1992), 563-600. doi: 10.1145/146931.146932.

[25]

C. T. Yu and W. Sun, Automatic knowledge acquisition and maintenance for semantic query optimization, IEEE Transactions on Knowledge and Data Engineering, 1 (1989), 362-375. doi: 10.1109/69.87981.

[1]

Peizhao Yu, Guoshan Zhang. Eigenstructure assignment for polynomial matrix systems ensuring normalization and impulse elimination. Mathematical Foundations of Computing, 2019, 2 (3) : 251-266. doi: 10.3934/mfc.2019016

[2]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[3]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[4]

Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial and Management Optimization, 2008, 4 (3) : 477-487. doi: 10.3934/jimo.2008.4.477

[5]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[6]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[7]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[8]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[9]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[10]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[11]

Tiffany A. Jones, Lou Caccetta, Volker Rehbock. Optimisation modelling of cancer growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 115-123. doi: 10.3934/dcdsb.2017006

[12]

Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1723-1735. doi: 10.3934/jimo.2021041

[13]

Jean Dolbeault, Robert Stańczy. Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi--Dirac statistics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 139-154. doi: 10.3934/dcds.2015.35.139

[14]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[15]

Andrea Braides, Margherita Solci, Enrico Vitali. A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2 (3) : 551-567. doi: 10.3934/nhm.2007.2.551

[16]

Sabine Hittmeir, Sara Merino-Aceituno. Kinetic derivation of fractional Stokes and Stokes-Fourier systems. Kinetic and Related Models, 2016, 9 (1) : 105-129. doi: 10.3934/krm.2016.9.105

[17]

Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro. Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours. Networks and Heterogeneous Media, 2018, 13 (1) : 1-26. doi: 10.3934/nhm.2018001

[18]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic and Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[19]

Adrian Korban, Serap Sahinkaya, Deniz Ustun. New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022032

[20]

Feng Bao, Yanzhao Cao, Weidong Zhao. A first order semi-discrete algorithm for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1297-1313. doi: 10.3934/dcdsb.2015.20.1297

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (164)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]