December  2015, 8(6): 1401-1414. doi: 10.3934/dcdss.2015.8.1401

Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things

1. 

School of Management, Northwestern Polytechnical University, Xi'an 710072, China, China

2. 

School of Information Engineering, Yulin University, Yulin 719000, China

Received  June 2015 Revised  August 2015 Published  December 2015

In order to reduce the amount of data collected in the Internet of things, to improve the processing speed of big data. To reduce the collected data from Internet of Things by compressed sensing sampling method is proposed. To overcome high computational complexity of compressed sensing algorithms, the search terms of the gradient projection sparse reconstruction algorithm (GPSR-BB) are improved by using multi-objective optimization particle swarm optimization algorithm; it can effectively improve the reconstruction accuracy of the algorithm. Application results show that the proposed multi-objective particle swarm optimization-Genetic algorithm (MOPSOGA) is than traditional GPSR-BB algorithm iterations decreased 51.6%. The success rate of reconstruction is higher than that of the traditional algorithm of 0.15; it's with a better reconstruction performance.
Citation: Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401
References:
[1]

H. Ammari, J. Garnier and V. Jugnon, Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging,, Discrete and Continuous Dynamical Systems - Series S, 8 (2015), 389.   Google Scholar

[2]

S. J. Birkinshaw and G. Parkin, A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts,, Journal of Hydroinformatics, 10 (2013), 127.   Google Scholar

[3]

B. Bonnard, T. Combot and L. Jassionnesse, Integrability methods in the time minimal coherence transfer for Ising chains of three spins,, Discrete and Continuous Dynamical Systems - Series A, 35 (2015), 4095.  doi: 10.3934/dcds.2015.35.4095.  Google Scholar

[4]

M. Costantiti, A. Farina and F. Zirilli, The fusion of different resolution SAR images,, in Proceedings of the IEEE. Vol. 85, (1997), 139.  doi: 10.1109/5.554214.  Google Scholar

[5]

Z. Du, X. Chen and Z. Feng, Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms,, Discrete and Continuous Dynamical Systems - Series S, 7 (2014), 1203.  doi: 10.3934/dcdss.2014.7.1203.  Google Scholar

[6]

F. Zhang, H.-F. Xue and D.-S. Xu, Big data cleaning algorithms in cloud computing,, International Journal of Online Engineering, 9 (2013), 77.   Google Scholar

[7]

K. Zhang, H. Huang and H. Yang, A transformer fault diagnosis method integrating improved genetic algorithm with least square support vector machine,, Power System Technology, 34 (2010), 164.   Google Scholar

[8]

J. Li, H. Liu and Q. Wang, Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method,, Discrete and Continuous Dynamical Systems - Series S, 8 (2015), 547.   Google Scholar

[9]

M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud and S. Marco, Drift compensation of gas sensor array data by orthogonal signal correction,, Chemometrics and Intelligent Laboratory Systems, 100 (2010), 28.  doi: 10.1016/j.chemolab.2009.10.002.  Google Scholar

[10]

C. Pohl and J. L. Van Genderen, Image fusionin remote sensing: Concepts, methods and applications,, International Journal of Remote Sensing, 19 (1999), 823.   Google Scholar

[11]

V. M. Quiroga and I. Popescu, Cloud and cluster computing in uncertainty analysis of integrated flood models,, Journal of Hydroinformatics, 15 (2013), 55.   Google Scholar

[12]

R. Hwang Ryol and M. fred Huber, A particle filter approach fro multi-target tracking intelligent sobots and systems,, Intelligent Robots and Systems, 11 (2007), 2753.   Google Scholar

[13]

H. Schättler and U. Ledzewicz, Fields of extremals and sensitivity analysis for multi-input bilinear optimal control problems,, Discrete and Continuous Dynamical Systems - Series A, 35 (2015), 4611.   Google Scholar

[14]

D. Tsujinishi and S. Abe, Fuzzy least squares support vector machines for multiclass problems,, Neural Networks, 16 (2003), 785.  doi: 10.1016/S0893-6080(03)00110-2.  Google Scholar

[15]

B. Üstün and W. J. Melssen, Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization,, Analytical Chimica Acta (S0003-2670), 544 (2005), 0003.   Google Scholar

show all references

References:
[1]

H. Ammari, J. Garnier and V. Jugnon, Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging,, Discrete and Continuous Dynamical Systems - Series S, 8 (2015), 389.   Google Scholar

[2]

S. J. Birkinshaw and G. Parkin, A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts,, Journal of Hydroinformatics, 10 (2013), 127.   Google Scholar

[3]

B. Bonnard, T. Combot and L. Jassionnesse, Integrability methods in the time minimal coherence transfer for Ising chains of three spins,, Discrete and Continuous Dynamical Systems - Series A, 35 (2015), 4095.  doi: 10.3934/dcds.2015.35.4095.  Google Scholar

[4]

M. Costantiti, A. Farina and F. Zirilli, The fusion of different resolution SAR images,, in Proceedings of the IEEE. Vol. 85, (1997), 139.  doi: 10.1109/5.554214.  Google Scholar

[5]

Z. Du, X. Chen and Z. Feng, Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms,, Discrete and Continuous Dynamical Systems - Series S, 7 (2014), 1203.  doi: 10.3934/dcdss.2014.7.1203.  Google Scholar

[6]

F. Zhang, H.-F. Xue and D.-S. Xu, Big data cleaning algorithms in cloud computing,, International Journal of Online Engineering, 9 (2013), 77.   Google Scholar

[7]

K. Zhang, H. Huang and H. Yang, A transformer fault diagnosis method integrating improved genetic algorithm with least square support vector machine,, Power System Technology, 34 (2010), 164.   Google Scholar

[8]

J. Li, H. Liu and Q. Wang, Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method,, Discrete and Continuous Dynamical Systems - Series S, 8 (2015), 547.   Google Scholar

[9]

M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud and S. Marco, Drift compensation of gas sensor array data by orthogonal signal correction,, Chemometrics and Intelligent Laboratory Systems, 100 (2010), 28.  doi: 10.1016/j.chemolab.2009.10.002.  Google Scholar

[10]

C. Pohl and J. L. Van Genderen, Image fusionin remote sensing: Concepts, methods and applications,, International Journal of Remote Sensing, 19 (1999), 823.   Google Scholar

[11]

V. M. Quiroga and I. Popescu, Cloud and cluster computing in uncertainty analysis of integrated flood models,, Journal of Hydroinformatics, 15 (2013), 55.   Google Scholar

[12]

R. Hwang Ryol and M. fred Huber, A particle filter approach fro multi-target tracking intelligent sobots and systems,, Intelligent Robots and Systems, 11 (2007), 2753.   Google Scholar

[13]

H. Schättler and U. Ledzewicz, Fields of extremals and sensitivity analysis for multi-input bilinear optimal control problems,, Discrete and Continuous Dynamical Systems - Series A, 35 (2015), 4611.   Google Scholar

[14]

D. Tsujinishi and S. Abe, Fuzzy least squares support vector machines for multiclass problems,, Neural Networks, 16 (2003), 785.  doi: 10.1016/S0893-6080(03)00110-2.  Google Scholar

[15]

B. Üstün and W. J. Melssen, Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization,, Analytical Chimica Acta (S0003-2670), 544 (2005), 0003.   Google Scholar

[1]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[2]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[3]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[4]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[5]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[6]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[7]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[8]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[9]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[12]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[13]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[14]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[15]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[16]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[17]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[18]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[19]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[20]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]