December  2015, 8(6): 1415-1421. doi: 10.3934/dcdss.2015.8.1415

Research on the method of step feature extraction for EOD robot based on 2D laser radar

1. 

College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China

2. 

College of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081

3. 

School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081, China

Received  July 2015 Revised  September 2015 Published  December 2015

Considering the requirements of climbing obstacle and stairs for Explosive Ordnance Disposal (EOD) robot, a method about step feature extraction based on two-dimensional (2D) laser radar is in great demand. In this paper, we research the three-dimensional (3D) environment feature extraction (EFE) method including the 3D point clouds map construction, the line feature extraction and the plane feature extraction. The EFE method can be applied to feature extraction of the step vertical plane. Based on the method, we construct a 3D feature recognition system (FRS) using 2D laser radar. FRS can help us extract quickly the step vertical planes from 3D laser radar line map, thus can provide necessary environment information for the decision and action of EOD robot. We demonstrate the ability of FRS by applying it to some typical step environment.
Citation: Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415
References:
[1]

X. G. Duan, Q. Huang and J. T. Li, Design and implementation of a small ground mobile robot with multi-locomotion modes,, China Mechanical Engineering, 18 (2007), 8.   Google Scholar

[2]

L. Q. Fan, X. F. Yao and H. N. Qi, An automatic control system for EOD robot based on binocular vision position,, Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, (2007), 914.  doi: 10.1109/ROBIO.2007.4522285.  Google Scholar

[3]

Q. Giuseppe, B. Luca and B. Giorgio, Epi.q-TG: Mobile robot for surveillance,, Industrial Robot: An International Journal, 38 (2011), 282.  doi: 10.1108/01439911111122789.  Google Scholar

[4]

S. Jiang, Service robot,, Robot Technique and Application, 3 (2004), 10.   Google Scholar

[5]

R. Labayrade, C. Royere and D. Gruyer, et al., Cooperative fusion for multi-obstacles detection with use of stereovision and laser scanner,, Autonomous Robots, 19 (2005), 117.  doi: 10.1007/s10514-005-0611-7.  Google Scholar

[6]

Y. W. Li, S. R. Ge and H. Zhu, et al., Obstacle-surmounting mechanism and capability of four-track robot with two swing arms,, Robot, 32 (2010), 157.  doi: 10.3724/SP.J.1218.2010.00157.  Google Scholar

[7]

A. I. Mourikis, N. Trawny and I. R. Stergios, et al., Autonomous stair climbing for tracked vehicles,, International Journal of Robotics Research, 26 (2007), 737.   Google Scholar

[8]

S. Steplight, G. Egnal and S. Jung, A mode-based sensorfusion approach to robotics stair-climbing,, in Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2000), 1113.  doi: 10.1109/IROS.2000.893168.  Google Scholar

[9]

S. Thrun, A personal account of the development of stanley the robot that won the DARPA grand challenge,, AI Magazine, 27 (2006), 69.  doi: 10.1609/aimag.v27i4.1910.  Google Scholar

[10]

J. F. Vasconcelos, C. Silvestre and P. Oliveira, et al., Embedded UAV model and LASER aiding techniques for inertial navigation systems,, Control Engineering Practice, 18 (2010), 262.  doi: 10.1016/j.conengprac.2009.11.004.  Google Scholar

[11]

S. Wender and K. Dietmayer, 3D vehicle detection using a laser scanner and a video camera,, IET, 2 (2008), 105.  doi: 10.1049/iet-its:20070031.  Google Scholar

[12]

Y. Wang, Z. Ma and Y. Hu, et al., Novel free-form surface 3D laser scanning system,, Journal of Mechanical Engineering, 45 (2009), 260.   Google Scholar

[13]

Y. Xiong and L. Matthies, Vision-guided autonomous stair climbing,, in IEEE Int. Conf. Robotics and Automation, (2000), 1842.  doi: 10.1109/ROBOT.2000.844863.  Google Scholar

[14]

P. Yang, J. Chen and C. M. Li, et al., Design of gravity center regulation system of stair climbling intelligent service robot,, Journal of Mechanical Transmission, 38 (2014), 102.   Google Scholar

[15]

H. L. Zhuang, Control System of Specialized Moble Robot and Obstacle Performance Study,, Ph.D thesis, (2013).   Google Scholar

[16]

G. J. Zhang, Machine Vision,, $1^{nd}$ edition, (1994).   Google Scholar

show all references

References:
[1]

X. G. Duan, Q. Huang and J. T. Li, Design and implementation of a small ground mobile robot with multi-locomotion modes,, China Mechanical Engineering, 18 (2007), 8.   Google Scholar

[2]

L. Q. Fan, X. F. Yao and H. N. Qi, An automatic control system for EOD robot based on binocular vision position,, Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, (2007), 914.  doi: 10.1109/ROBIO.2007.4522285.  Google Scholar

[3]

Q. Giuseppe, B. Luca and B. Giorgio, Epi.q-TG: Mobile robot for surveillance,, Industrial Robot: An International Journal, 38 (2011), 282.  doi: 10.1108/01439911111122789.  Google Scholar

[4]

S. Jiang, Service robot,, Robot Technique and Application, 3 (2004), 10.   Google Scholar

[5]

R. Labayrade, C. Royere and D. Gruyer, et al., Cooperative fusion for multi-obstacles detection with use of stereovision and laser scanner,, Autonomous Robots, 19 (2005), 117.  doi: 10.1007/s10514-005-0611-7.  Google Scholar

[6]

Y. W. Li, S. R. Ge and H. Zhu, et al., Obstacle-surmounting mechanism and capability of four-track robot with two swing arms,, Robot, 32 (2010), 157.  doi: 10.3724/SP.J.1218.2010.00157.  Google Scholar

[7]

A. I. Mourikis, N. Trawny and I. R. Stergios, et al., Autonomous stair climbing for tracked vehicles,, International Journal of Robotics Research, 26 (2007), 737.   Google Scholar

[8]

S. Steplight, G. Egnal and S. Jung, A mode-based sensorfusion approach to robotics stair-climbing,, in Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2000), 1113.  doi: 10.1109/IROS.2000.893168.  Google Scholar

[9]

S. Thrun, A personal account of the development of stanley the robot that won the DARPA grand challenge,, AI Magazine, 27 (2006), 69.  doi: 10.1609/aimag.v27i4.1910.  Google Scholar

[10]

J. F. Vasconcelos, C. Silvestre and P. Oliveira, et al., Embedded UAV model and LASER aiding techniques for inertial navigation systems,, Control Engineering Practice, 18 (2010), 262.  doi: 10.1016/j.conengprac.2009.11.004.  Google Scholar

[11]

S. Wender and K. Dietmayer, 3D vehicle detection using a laser scanner and a video camera,, IET, 2 (2008), 105.  doi: 10.1049/iet-its:20070031.  Google Scholar

[12]

Y. Wang, Z. Ma and Y. Hu, et al., Novel free-form surface 3D laser scanning system,, Journal of Mechanical Engineering, 45 (2009), 260.   Google Scholar

[13]

Y. Xiong and L. Matthies, Vision-guided autonomous stair climbing,, in IEEE Int. Conf. Robotics and Automation, (2000), 1842.  doi: 10.1109/ROBOT.2000.844863.  Google Scholar

[14]

P. Yang, J. Chen and C. M. Li, et al., Design of gravity center regulation system of stair climbling intelligent service robot,, Journal of Mechanical Transmission, 38 (2014), 102.   Google Scholar

[15]

H. L. Zhuang, Control System of Specialized Moble Robot and Obstacle Performance Study,, Ph.D thesis, (2013).   Google Scholar

[16]

G. J. Zhang, Machine Vision,, $1^{nd}$ edition, (1994).   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[5]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[6]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[18]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[19]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[20]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]