\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A q-analogue of the multiplicative calculus: Q-multiplicative calculus

Abstract Related Papers Cited by
  • In this paper, we propose q-analog of some basic concepts of multiplicative calculus and we called it as q-multiplicative calculus. We successfully introduced q-multiplicative calculus and some basic theorems about derivatives, integrals and infinite products are proved within this calculus.
    Mathematics Subject Classification: 05A30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. E. Bashirov, E. Kurpinar and A. Özyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36-48.doi: 10.1016/j.jmaa.2007.03.081.

    [2]

    A. E. Bashirov, E. Misirli, Y. Tandoğdu and A. Özyapici, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 425-438.doi: 10.1007/s11766-011-2767-6.

    [3]

    T. Ernst, A New Notation for q-Calculus a New q-Taylor Formula, U. U. D. M. Report 1999:25, ISSN 1101-3591, Department of Mathematics, University, Uppsala, 1999.

    [4]

    D. A. Filip and C. Piatecki, A Non-Newtonian Examination of the Theory of Exogenous Economic Growth, CNCSIS - UEFISCSU(project number PNII IDEI 2366/2008) and LEO, 2010.

    [5]

    M. Grossman and R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA, 1972.

    [6]

    F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.

    [7]

    S.-C. Jing and H.-Y. Fan, q-Taylor's formula with its q-remainder, Commun. Theor. Phys., 23 (1995), 117-120.doi: 10.1088/0253-6102/23/1/117.

    [8]

    V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.doi: 10.1007/978-1-4613-0071-7.

    [9]

    R. Koekoek and R. F. Swarttouw, Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue, Report No 98-17, Delft University of Technology, 1998.

    [10]

    E. Koelink, Eight lectures on quantum groups and q-special functions, Rev. Colombiana de Mat., 30 (1996), 93-180.

    [11]

    T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc., 333 (1992), 445-461.doi: 10.2307/2154118.

    [12]

    P. M. Rajković, M. S. Stanković and S. D. Marinković, Mean value theorems in q-calculus, Mat. Vesnik, 54 (2002), 171-178.

    [13]

    F. Ryde, A Contribution to the Theory of Linear Homogeneous Geometric Difference Equations (q-Difference Equations), Dissertation, Lund, 1921.

    [14]

    D. Stanley, A multiplicative calculus, Primus, IX (1999), 310-326.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(575) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return