February  2015, 8(1): 151-168. doi: 10.3934/dcdss.2015.8.151

Two-Scale numerical simulation of sand transport problems

1. 

Université Alioune Diop de Bambey, UFR S.A.T.I.C, BP 30 Bambey (Sénégal), Ecole Doctorale de Mathématiques et Informatique, Laboratoire de Mathématiques de la Décision et d'Analyse Numérique, (L.M.D.A.N) F.A.S.E.G)/F.S.T., Senegal

2. 

Université de Bretagne-Sud, LMBA - UMR6205, Centre Yves Coppens, Campus de Tohannic, F-56017, Vannes Cedex, France

3. 

Université Cheikh Anta Diop de Dakar, BP 16889 Dakar Fann, Ecole Doctorale de Mathématiques et Informatique, Laboratoire de Mathématiques de la Décision et d'Analyse Numérique, (L.M.D.A.N) F.A.S.E.G, Senegal

Received  April 2013 Revised  September 2013 Published  July 2014

In this paper we consider the model built in [3] for short term dynamics of dunes in tidal area. We construct a Two-Scale Numerical Method based on the fact that the solution of the equation which has oscillations Two-Scale converges to the solution of a well-posed problem. This numerical method uses on Fourier series.
Citation: Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151
References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482.  doi: 10.1137/0523084.  Google Scholar

[2]

P. Aillot, E. Frénod and V. Monbet, Long term object drift in the ocean with tide and wind,, Multiscale Model. and Simul., 5 (2006), 514.  doi: 10.1137/050639727.  Google Scholar

[3]

I. Faye, E. Frénod and D. Seck, Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment,, Discrete Contin. Dyn. Syst., 29 (2011), 1001.  doi: 10.3934/dcds.2011.29.1001.  Google Scholar

[4]

E. Frénod and A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates,, J. of Pure Appl. Math. Adv. Appl., 4 (2010), 135.   Google Scholar

[5]

E. Frénod, A. Mouton and E. Sonnendrücker, Two-Scale numerical simulation of the weakly compressible 1D isentropic Euler equations,, Numer. Math., 108 (2007), 263.  doi: 10.1007/s00211-007-0116-8.  Google Scholar

[6]

E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method,, Math. Models Methods Appl. Sci., 19 (2009), 175.  doi: 10.1142/S0218202509003395.  Google Scholar

[7]

E. Frénod, P. A. Raviart and E. Sonnendrücker, Two scale expansion of a singularly perturbed convection equation,, J. Math. Pures Appl. (9), 80 (2001), 815.  doi: 10.1016/S0021-7824(01)01215-6.  Google Scholar

[8]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type,, (Russian) Translated from the Russian by S. Smith, (1968).   Google Scholar

[9]

A. Mouton, Approximation Multi-échelles de L'équation de Vlasov,, Thèse de doctorat, (2009).   Google Scholar

[10]

A. Mouton, Two-Scale semi-Lagrangian simulation of a charged particule beam in a periodic focusing channel,, Kinet. Relat. Models, 2 (2009), 251.  doi: 10.3934/krm.2009.2.251.  Google Scholar

[11]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608.  doi: 10.1137/0520043.  Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482.  doi: 10.1137/0523084.  Google Scholar

[2]

P. Aillot, E. Frénod and V. Monbet, Long term object drift in the ocean with tide and wind,, Multiscale Model. and Simul., 5 (2006), 514.  doi: 10.1137/050639727.  Google Scholar

[3]

I. Faye, E. Frénod and D. Seck, Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment,, Discrete Contin. Dyn. Syst., 29 (2011), 1001.  doi: 10.3934/dcds.2011.29.1001.  Google Scholar

[4]

E. Frénod and A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates,, J. of Pure Appl. Math. Adv. Appl., 4 (2010), 135.   Google Scholar

[5]

E. Frénod, A. Mouton and E. Sonnendrücker, Two-Scale numerical simulation of the weakly compressible 1D isentropic Euler equations,, Numer. Math., 108 (2007), 263.  doi: 10.1007/s00211-007-0116-8.  Google Scholar

[6]

E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method,, Math. Models Methods Appl. Sci., 19 (2009), 175.  doi: 10.1142/S0218202509003395.  Google Scholar

[7]

E. Frénod, P. A. Raviart and E. Sonnendrücker, Two scale expansion of a singularly perturbed convection equation,, J. Math. Pures Appl. (9), 80 (2001), 815.  doi: 10.1016/S0021-7824(01)01215-6.  Google Scholar

[8]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type,, (Russian) Translated from the Russian by S. Smith, (1968).   Google Scholar

[9]

A. Mouton, Approximation Multi-échelles de L'équation de Vlasov,, Thèse de doctorat, (2009).   Google Scholar

[10]

A. Mouton, Two-Scale semi-Lagrangian simulation of a charged particule beam in a periodic focusing channel,, Kinet. Relat. Models, 2 (2009), 251.  doi: 10.3934/krm.2009.2.251.  Google Scholar

[11]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608.  doi: 10.1137/0520043.  Google Scholar

[1]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[2]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[16]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[19]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[20]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]