February  2015, 8(1): 169-183. doi: 10.3934/dcdss.2015.8.169

An exponential integrator for a highly oscillatory vlasov equation

1. 

Université de Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes

2. 

Inria Nancy-Grand Est, CALVI Project, & IRMA (UMR CNRS 7501), Université de Strasbourg, 7, rue René-Descartes, 67084, Strasbourg, France

3. 

Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching, Germany

Received  April 2013 Revised  May 2013 Published  July 2014

In the framework of a Particle-In-Cell scheme for some 1D Vlasov-Poisson system depending on a small parameter, we propose a time-stepping method which is numerically uniformly accurate when the parameter goes to zero. Based on an exponential time differencing approach, the scheme is able to use large time steps with respect to the typical size of the fast oscillations of the solution.
Citation: Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169
References:
[1]

C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation,, Institute of Physics Publishing, (1991).   Google Scholar

[2]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, $2^{nd}$ edition, (2001).   Google Scholar

[3]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems,, J. Comput. Phys., 176 (2002), 430.  doi: 10.1006/jcph.2002.6995.  Google Scholar

[4]

N. Crouseilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations,, J. Comput. Phys., 248 (2013), 287.  doi: 10.1016/j.jcp.2013.04.022.  Google Scholar

[5]

F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation,, Math. Models Methods Appl. Sci., 16 (2006), 763.  doi: 10.1142/S0218202506001340.  Google Scholar

[6]

E. Frénod, Application of the averaging method to the gyrokinetic plasma,, Asymptot. Anal., 46 (2006), 1.   Google Scholar

[7]

E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method,, Math. Models Methods Appl. Sci., 19 (2009), 175.  doi: 10.1142/S0218202509003395.  Google Scholar

[8]

M. Hochbruck and A. Ostermann, Exponential integrators,, Acta Numer., 19 (2010), 209.  doi: 10.1017/S0962492910000048.  Google Scholar

[9]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs,, SIAM J. Sci. Comput., 26 (2005), 1214.  doi: 10.1137/S1064827502410633.  Google Scholar

[10]

T. Tückmantel, A. Pukhov, J. Liljo and M. Hochbruck, Three-dimensional relativistic particle-in-cell hybrid code based on an exponential integrator,, IEEE Trans. Plasma Sci., 38 (2010), 2383.   Google Scholar

show all references

References:
[1]

C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation,, Institute of Physics Publishing, (1991).   Google Scholar

[2]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, $2^{nd}$ edition, (2001).   Google Scholar

[3]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems,, J. Comput. Phys., 176 (2002), 430.  doi: 10.1006/jcph.2002.6995.  Google Scholar

[4]

N. Crouseilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations,, J. Comput. Phys., 248 (2013), 287.  doi: 10.1016/j.jcp.2013.04.022.  Google Scholar

[5]

F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation,, Math. Models Methods Appl. Sci., 16 (2006), 763.  doi: 10.1142/S0218202506001340.  Google Scholar

[6]

E. Frénod, Application of the averaging method to the gyrokinetic plasma,, Asymptot. Anal., 46 (2006), 1.   Google Scholar

[7]

E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method,, Math. Models Methods Appl. Sci., 19 (2009), 175.  doi: 10.1142/S0218202509003395.  Google Scholar

[8]

M. Hochbruck and A. Ostermann, Exponential integrators,, Acta Numer., 19 (2010), 209.  doi: 10.1017/S0962492910000048.  Google Scholar

[9]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs,, SIAM J. Sci. Comput., 26 (2005), 1214.  doi: 10.1137/S1064827502410633.  Google Scholar

[10]

T. Tückmantel, A. Pukhov, J. Liljo and M. Hochbruck, Three-dimensional relativistic particle-in-cell hybrid code based on an exponential integrator,, IEEE Trans. Plasma Sci., 38 (2010), 2383.   Google Scholar

[1]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[2]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[3]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[4]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[5]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[6]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[7]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[8]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[9]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[10]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[11]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[12]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[13]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[14]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[15]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[16]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[17]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[18]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[19]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[20]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

[Back to Top]