February  2015, 8(1): 223-241. doi: 10.3934/dcdss.2015.8.223

Geometric two-scale convergence on manifold and applications to the Vlasov equation

1. 

Centre de physique théorique-CNRS, Campus de Luminy, Case 907 13288 Marseille cedex 9, France

2. 

LMBA (UMR 6205) Université de Bretagne-Sud, Campus de Tohannic, 56000 Vannes, France

Received  May 2013 Revised  September 2013 Published  July 2014

We develop and we explain the two-scale convergence in the covariant formalism, i.e. using differential forms on a Riemannian manifold. For that purpose, we consider two manifolds $M$ and $Y$, the first one contains the positions and the second one the oscillations. We establish some convergence results working on geodesics on a manifold. Then, we apply this framework on examples.
Citation: Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223
References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084. Google Scholar

[2]

A. Back, Étude Théorique et Numérique Des Équations de Vlasov-Maxwell Dans le Formalisme Covariant,, (French) Ph.D Thesis, (2011). Google Scholar

[3]

G. D. Birkhoff, What is the ergodic theorem?,, Amer. Math. Monthly, 49 (1942), 222. doi: 10.2307/2303229. Google Scholar

[4]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation,, SIAM J. Math. Anal., 32 (2001), 1227. doi: 10.1137/S0036141099364243. Google Scholar

[5]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field,, Asymptot. Anal., 18 (1998), 193. Google Scholar

[6]

E. Frénod and P.-A. Raviart and E. Sonnendrücker, Two-scale expansion of a singularly perturbed convection equation,, J. Math. Pures Appl., 80 (2001), 815. doi: 10.1016/S0021-7824(01)01215-6. Google Scholar

[7]

D. Han-Kwan, The three-dimensional finite Larmor radius approximation,, Asymptot. Anal., 66 (2010), 9. Google Scholar

[8]

E. Hopf, Statistik Der Geodätischen Linien in Mannigfaltigkeiten Negativer Krümmung,, Ber. Verh. Sächs. Akad. Wiss. Leipzig, (1939). Google Scholar

[9]

J. Jost, Riemannian Geometry and Geometric Analysis,, Fifth edition, (2008). Google Scholar

[10]

F. I. Mautner, Geodesic flows on symmetric Riemann spaces,, Ann. of Math., 65 (1957), 416. doi: 10.2307/1970054. Google Scholar

[11]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608. doi: 10.1137/0520043. Google Scholar

[12]

H. C. Pak, Geometric two-scale convergence on forms and its applications to Maxwell's equations,, Proc. R. Soc. Edinb., 135 (2005), 133. doi: 10.1017/S0308210500003802. Google Scholar

[13]

C. H. Scott, $L^p$ theory of differential forms on manifolds,, Trans. Amer. Math. Soc., 347 (1995), 2075. doi: 10.2307/2154923. Google Scholar

[14]

C. H. Scott, $L^p$ Theory of Differential Forms on Manifolds,, ProQuest LLC, (1993). Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084. Google Scholar

[2]

A. Back, Étude Théorique et Numérique Des Équations de Vlasov-Maxwell Dans le Formalisme Covariant,, (French) Ph.D Thesis, (2011). Google Scholar

[3]

G. D. Birkhoff, What is the ergodic theorem?,, Amer. Math. Monthly, 49 (1942), 222. doi: 10.2307/2303229. Google Scholar

[4]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation,, SIAM J. Math. Anal., 32 (2001), 1227. doi: 10.1137/S0036141099364243. Google Scholar

[5]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field,, Asymptot. Anal., 18 (1998), 193. Google Scholar

[6]

E. Frénod and P.-A. Raviart and E. Sonnendrücker, Two-scale expansion of a singularly perturbed convection equation,, J. Math. Pures Appl., 80 (2001), 815. doi: 10.1016/S0021-7824(01)01215-6. Google Scholar

[7]

D. Han-Kwan, The three-dimensional finite Larmor radius approximation,, Asymptot. Anal., 66 (2010), 9. Google Scholar

[8]

E. Hopf, Statistik Der Geodätischen Linien in Mannigfaltigkeiten Negativer Krümmung,, Ber. Verh. Sächs. Akad. Wiss. Leipzig, (1939). Google Scholar

[9]

J. Jost, Riemannian Geometry and Geometric Analysis,, Fifth edition, (2008). Google Scholar

[10]

F. I. Mautner, Geodesic flows on symmetric Riemann spaces,, Ann. of Math., 65 (1957), 416. doi: 10.2307/1970054. Google Scholar

[11]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608. doi: 10.1137/0520043. Google Scholar

[12]

H. C. Pak, Geometric two-scale convergence on forms and its applications to Maxwell's equations,, Proc. R. Soc. Edinb., 135 (2005), 133. doi: 10.1017/S0308210500003802. Google Scholar

[13]

C. H. Scott, $L^p$ theory of differential forms on manifolds,, Trans. Amer. Math. Soc., 347 (1995), 2075. doi: 10.2307/2154923. Google Scholar

[14]

C. H. Scott, $L^p$ Theory of Differential Forms on Manifolds,, ProQuest LLC, (1993). Google Scholar

[1]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[2]

Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058

[3]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[4]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

[5]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[6]

Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic & Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65

[7]

Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757

[8]

Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151

[9]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[10]

Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks & Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353

[11]

Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic & Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251

[12]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[13]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[14]

Yong Duan, Jian-Guo Liu. Convergence analysis of the vortex blob method for the $b$-equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1995-2011. doi: 10.3934/dcds.2014.34.1995

[15]

Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627

[16]

Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200

[17]

Zhuoqin Yang, Tingting Guan. Bifurcation analysis of complex bursting induced by two different time-scale slow variables. Conference Publications, 2011, 2011 (Special) : 1440-1447. doi: 10.3934/proc.2011.2011.1440

[18]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[19]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[20]

Victoria Sadovskaya. Cohomology of $GL(2,\mathbb{R})$-valued cocycles over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2085-2104. doi: 10.3934/dcds.2013.33.2085

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]