-
Previous Article
Energy-minimizing nematic elastomers
- DCDS-S Home
- This Issue
-
Next Article
Preface: Special issue on mathematical study on liquid crystals and related topics: Statics and dynamics
Existence of solutions to boundary value problems for smectic liquid crystals
1. | Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States |
2. | Department of Mathematics, Chungnam National University, 99 Daehak-ro, Gung-Dong Yuseong-gu, Daejeon 305-764 |
References:
[1] |
Phys. Rev. E, 75 (2007), 031701.
doi: 10.1103/PhysRevE.75.031701. |
[2] |
Arch. Rational Mech. Anal., 165 (2002), 161-186.
doi: 10.1007/s00205-002-0223-8. |
[3] |
Molecular Crystals and Liquid Crystals Journal, 510 (2009), 1135-1145. Google Scholar |
[4] |
Liquid Crystal Today, 9 (1999), 1-10. Google Scholar |
[5] |
Eur. Phys. J. B, 6 (1998), 347-353. Google Scholar |
[6] |
Phys. Rev. Lett., 70 (1993), p. 2742.
doi: 10.1103/PhysRevLett.70.2742. |
[7] |
Phys. Rev. E, 53 (1996), 4933-4943.
doi: 10.1103/PhysRevE.53.4933. |
[8] |
Phys. Rev. A, 14 (1976), p. 1202.
doi: 10.1103/PhysRevA.14.1202. |
[9] |
Science, 301 (2003), 1204-1211.
doi: 10.1126/science.1084956. |
[10] |
Solid State Commun., 10 (1972), 753-756. Google Scholar |
[11] |
Clarendon Press, Oxford, 1993. Google Scholar |
[12] |
J. Phys.: Condensed Matter, 20 (2008), 1-9. Google Scholar |
[13] |
John Wiley $&$ Sons, Inc., 1984. |
[14] |
Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61623-5. |
[15] |
Phys. Rev. A, 45 (1992), 5783-5788.
doi: 10.1103/PhysRevA.45.5783. |
[16] |
Springer, 2007. Google Scholar |
[17] |
Comm. Math Phys., 269 (2007), 369-399.
doi: 10.1007/s00220-006-0132-z. |
[18] |
Phys. Rev. E, 50 (1994), p. 2940.
doi: 10.1103/PhysRevE.50.2940. |
[19] |
Wiley-VCH, 1999. Google Scholar |
[20] |
Phys. Rev. E, 41 (1990), p. 4392.
doi: 10.1103/PhysRevA.41.4392. |
[21] |
Phys. Rev. E, 57 (1994), 574-581.
doi: 10.1103/PhysRevE.57.574. |
[22] |
World-Scientific, Singapore, New Jersey, London, Hong Kong, 2000. Google Scholar |
[23] |
J. Phys. II France, 5 (1995), 1223-1240. Google Scholar |
[24] |
SIAM J. Appl. Math., 66 (2006), 2107-2126.
doi: 10.1137/050641120. |
[25] |
Phys. Rev. A, 45 (1992), p. 953.
doi: 10.1103/PhysRevA.45.953. |
[26] |
Phys. Rev. E, 58 (1998), p. 7455. Google Scholar |
[27] |
Phys. Rev. E, 63 (2001), p. 031705.
doi: 10.1103/PhysRevE.63.031705. |
[28] |
Phys. Rev. E, 68 (2003), p. 061705. Google Scholar |
[29] |
Phys. Rev. Lett., 98 (2007), p. 247802. Google Scholar |
[30] |
Phys. Rev. E, 62 (2000), p. 2317. Google Scholar |
[31] |
Phys. Rev. E, 54 (1996), p. 3783. Google Scholar |
show all references
References:
[1] |
Phys. Rev. E, 75 (2007), 031701.
doi: 10.1103/PhysRevE.75.031701. |
[2] |
Arch. Rational Mech. Anal., 165 (2002), 161-186.
doi: 10.1007/s00205-002-0223-8. |
[3] |
Molecular Crystals and Liquid Crystals Journal, 510 (2009), 1135-1145. Google Scholar |
[4] |
Liquid Crystal Today, 9 (1999), 1-10. Google Scholar |
[5] |
Eur. Phys. J. B, 6 (1998), 347-353. Google Scholar |
[6] |
Phys. Rev. Lett., 70 (1993), p. 2742.
doi: 10.1103/PhysRevLett.70.2742. |
[7] |
Phys. Rev. E, 53 (1996), 4933-4943.
doi: 10.1103/PhysRevE.53.4933. |
[8] |
Phys. Rev. A, 14 (1976), p. 1202.
doi: 10.1103/PhysRevA.14.1202. |
[9] |
Science, 301 (2003), 1204-1211.
doi: 10.1126/science.1084956. |
[10] |
Solid State Commun., 10 (1972), 753-756. Google Scholar |
[11] |
Clarendon Press, Oxford, 1993. Google Scholar |
[12] |
J. Phys.: Condensed Matter, 20 (2008), 1-9. Google Scholar |
[13] |
John Wiley $&$ Sons, Inc., 1984. |
[14] |
Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61623-5. |
[15] |
Phys. Rev. A, 45 (1992), 5783-5788.
doi: 10.1103/PhysRevA.45.5783. |
[16] |
Springer, 2007. Google Scholar |
[17] |
Comm. Math Phys., 269 (2007), 369-399.
doi: 10.1007/s00220-006-0132-z. |
[18] |
Phys. Rev. E, 50 (1994), p. 2940.
doi: 10.1103/PhysRevE.50.2940. |
[19] |
Wiley-VCH, 1999. Google Scholar |
[20] |
Phys. Rev. E, 41 (1990), p. 4392.
doi: 10.1103/PhysRevA.41.4392. |
[21] |
Phys. Rev. E, 57 (1994), 574-581.
doi: 10.1103/PhysRevE.57.574. |
[22] |
World-Scientific, Singapore, New Jersey, London, Hong Kong, 2000. Google Scholar |
[23] |
J. Phys. II France, 5 (1995), 1223-1240. Google Scholar |
[24] |
SIAM J. Appl. Math., 66 (2006), 2107-2126.
doi: 10.1137/050641120. |
[25] |
Phys. Rev. A, 45 (1992), p. 953.
doi: 10.1103/PhysRevA.45.953. |
[26] |
Phys. Rev. E, 58 (1998), p. 7455. Google Scholar |
[27] |
Phys. Rev. E, 63 (2001), p. 031705.
doi: 10.1103/PhysRevE.63.031705. |
[28] |
Phys. Rev. E, 68 (2003), p. 061705. Google Scholar |
[29] |
Phys. Rev. Lett., 98 (2007), p. 247802. Google Scholar |
[30] |
Phys. Rev. E, 62 (2000), p. 2317. Google Scholar |
[31] |
Phys. Rev. E, 54 (1996), p. 3783. Google Scholar |
[1] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[2] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[3] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[4] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[5] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[6] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021092 |
[7] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[8] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[9] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[10] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[11] |
Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070 |
[12] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[13] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[14] |
Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39. |
[15] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[16] |
Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021043 |
[17] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[18] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[19] |
Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021049 |
[20] |
Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021069 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]