April  2015, 8(2): 243-257. doi: 10.3934/dcdss.2015.8.243

Existence of solutions to boundary value problems for smectic liquid crystals

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States

2. 

Department of Mathematics, Chungnam National University, 99 Daehak-ro, Gung-Dong Yuseong-gu, Daejeon 305-764

Received  April 2013 Revised  October 2013 Published  July 2014

We prove lower semicontinuity and lower bounds for a Chen-Lubensky energy describing nematic/smectic liquid crystals with physically realistic boundary conditions. The Chen-Lubensky energy captures stable phases of the liquid crystal material, ranging from purely nematic or smectic states to coexisting nematic/smectic states. By including appropriate additional terms, the model includes the effects of applied electric or magnetic fields, and/or electrical self-interactions in the case of polarized liquid crystals. As a consequence of our results, we establish existence of minimizers with weak or strong anchoring of the director field (describing molecular orientation) at the boundary, and Dirichlet or Neumann boundary conditions on the smectic order parameter for the liquid crystal material.
Citation: Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243
References:
[1]

C. Bailey, E. C. Gartland and A. Jákli, Structure and stability of bent core liquid crystal fibers,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.031701.  Google Scholar

[2]

P. Bauman, M. C. Calderer, C. Liu and D. Phillips, The phase transition between nematic and smectic A* liquid crystals,, Arch. Rational Mech. Anal., 165 (2002), 161.  doi: 10.1007/s00205-002-0223-8.  Google Scholar

[3]

P. Bauman and D. Phillips, Stability of bent core liquid crystal fibers,, Molecular Crystals and Liquid Crystals Journal, 510 (2009), 1135.   Google Scholar

[4]

H. R. Brand, P. E. Cladis and H. Pleiner, Fluid biaxial banana smectics: Symmetry at work,, Liquid Crystal Today, 9 (1999), 1.   Google Scholar

[5]

H. R. Brand, P. E. Claids and H. Pleiner, Macroscopic properties of smectic $C_G$ liquid crystals,, Eur. Phys. J. B, 6 (1998), 347.   Google Scholar

[6]

M. Cagnon and G. Durand, Positional anchoring of smectic liquid crystals,, Phys. Rev. Lett., 70 (1993).  doi: 10.1103/PhysRevLett.70.2742.  Google Scholar

[7]

C. M. Chen and F. C. Mackintosh, Theory of modulated phases in lipid bilayers and liquid crystal films,, Phys. Rev. E, 53 (1996), 4933.  doi: 10.1103/PhysRevE.53.4933.  Google Scholar

[8]

J. Chen and T. Lubensky, Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions,, Phys. Rev. A, 14 (1976).  doi: 10.1103/PhysRevA.14.1202.  Google Scholar

[9]

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Köblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Petzel, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe and N. A. Clark, Polarization-Modulated liquid crystal phases,, Science, 301 (2003), 1204.  doi: 10.1126/science.1084956.  Google Scholar

[10]

P. G. de Gennes, An anology between superconductivity and smectic-A,, Solid State Commun., 10 (1972), 753.   Google Scholar

[11]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,, Clarendon Press, (1993).   Google Scholar

[12]

R. De Vita and I. W. Stewart, Influence of alignnment of smectic A liquid crystals with surface pretilt,, J. Phys.: Condensed Matter, 20 (2008), 1.   Google Scholar

[13]

G. B. Folland, Real Analysis,, John Wiley $&$ Sons, (1984).   Google Scholar

[14]

V. Girault and P. Raviart, Finite Element Methods for Navier Stokes Equations,, Springer-Verlag, (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[15]

A. E. Jacobs, G. Goldner and D. Mukamel, Modulated structures in tilt chiral smectic films,, Phys. Rev. A, 45 (1992), 5783.  doi: 10.1103/PhysRevA.45.5783.  Google Scholar

[16]

A. Jákli, C. Bailey and J. Harden, Thermotropic Liquid Crystals,, Springer, (2007).   Google Scholar

[17]

S. Joo and D. Phillips, Chiral nematic toward smectic liquid crystals,, Comm. Math Phys., 269 (2007), 369.  doi: 10.1007/s00220-006-0132-z.  Google Scholar

[18]

S. Kralj and T. Sluckin, Landau-de Gennes theory of the chevron structure in a smectic-A liquid crystal,, Phys. Rev. E, 50 (1994).  doi: 10.1103/PhysRevE.50.2940.  Google Scholar

[19]

S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals,, Wiley-VCH, (1999).   Google Scholar

[20]

T. Lubensky and S. Renn, Twist-grain-boundary phases near the nematic-smectic-A-smectic-C point in liquid crystals,, Phys. Rev. E, 41 (1990).  doi: 10.1103/PhysRevA.41.4392.  Google Scholar

[21]

I. Luk'yanchuk, Phase transition between the cholesteric and twist grain boundary C phases,, Phys. Rev. E, 57 (1994), 574.  doi: 10.1103/PhysRevE.57.574.  Google Scholar

[22]

I. Muševič, R. Blinc and B. Žekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals,, World-Scientific, (2000).   Google Scholar

[23]

M. A. Osipov and S. A. Pikin, Dipolar and quadrapolar ordering in ferroelectric liquid crystals,, J. Phys. II France, 5 (1995), 1223.   Google Scholar

[24]

J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals,, SIAM J. Appl. Math., 66 (2006), 2107.  doi: 10.1137/050641120.  Google Scholar

[25]

S. Renn, Multicritical behavior of abrikosov vortex lattices near the cholesteric - smectic A - smectic C* point,, Phys. Rev. A, 45 (1992).  doi: 10.1103/PhysRevA.45.953.  Google Scholar

[26]

A. Shalaginov, L. Hazelwood and T. Sluckin, Dynamics of chevron formation,, Phys. Rev. E, 58 (1998).   Google Scholar

[27]

M. Slavinec, S. Kralj, S. Zumer and T. Sluckin, Surface depinning of smectic-A edge dislocations,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.031705.  Google Scholar

[28]

N. Vaupotič and M. Čopič, Effect of spontaneous polarization and polar surface anchoring on the director and layer structure in surface stabilized liquid crystal cells,, Phys. Rev. E, 68 (2003).   Google Scholar

[29]

N. Vaupotič, M. Čopič, E. Gorecka and D. Pociecha, Modulated structures in bent-core liquid crystals: Two faces of one phase,, Phys. Rev. Lett., 98 (2007).   Google Scholar

[30]

N. Vaupotič, V. Grubelnik and M. Čopič, Influence of an external field on structure in surface-stabilized smectic-C chevron cells,, Phys. Rev. E, 62 (2000).   Google Scholar

[31]

N. Vaupotič, S. Kralj, M. Čopič and T. Sluckin, Landau-de Gennes theory of the chevron structure in a smectic liquid crystal,, Phys. Rev. E, 54 (1996).   Google Scholar

show all references

References:
[1]

C. Bailey, E. C. Gartland and A. Jákli, Structure and stability of bent core liquid crystal fibers,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.031701.  Google Scholar

[2]

P. Bauman, M. C. Calderer, C. Liu and D. Phillips, The phase transition between nematic and smectic A* liquid crystals,, Arch. Rational Mech. Anal., 165 (2002), 161.  doi: 10.1007/s00205-002-0223-8.  Google Scholar

[3]

P. Bauman and D. Phillips, Stability of bent core liquid crystal fibers,, Molecular Crystals and Liquid Crystals Journal, 510 (2009), 1135.   Google Scholar

[4]

H. R. Brand, P. E. Cladis and H. Pleiner, Fluid biaxial banana smectics: Symmetry at work,, Liquid Crystal Today, 9 (1999), 1.   Google Scholar

[5]

H. R. Brand, P. E. Claids and H. Pleiner, Macroscopic properties of smectic $C_G$ liquid crystals,, Eur. Phys. J. B, 6 (1998), 347.   Google Scholar

[6]

M. Cagnon and G. Durand, Positional anchoring of smectic liquid crystals,, Phys. Rev. Lett., 70 (1993).  doi: 10.1103/PhysRevLett.70.2742.  Google Scholar

[7]

C. M. Chen and F. C. Mackintosh, Theory of modulated phases in lipid bilayers and liquid crystal films,, Phys. Rev. E, 53 (1996), 4933.  doi: 10.1103/PhysRevE.53.4933.  Google Scholar

[8]

J. Chen and T. Lubensky, Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions,, Phys. Rev. A, 14 (1976).  doi: 10.1103/PhysRevA.14.1202.  Google Scholar

[9]

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Köblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Petzel, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe and N. A. Clark, Polarization-Modulated liquid crystal phases,, Science, 301 (2003), 1204.  doi: 10.1126/science.1084956.  Google Scholar

[10]

P. G. de Gennes, An anology between superconductivity and smectic-A,, Solid State Commun., 10 (1972), 753.   Google Scholar

[11]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,, Clarendon Press, (1993).   Google Scholar

[12]

R. De Vita and I. W. Stewart, Influence of alignnment of smectic A liquid crystals with surface pretilt,, J. Phys.: Condensed Matter, 20 (2008), 1.   Google Scholar

[13]

G. B. Folland, Real Analysis,, John Wiley $&$ Sons, (1984).   Google Scholar

[14]

V. Girault and P. Raviart, Finite Element Methods for Navier Stokes Equations,, Springer-Verlag, (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[15]

A. E. Jacobs, G. Goldner and D. Mukamel, Modulated structures in tilt chiral smectic films,, Phys. Rev. A, 45 (1992), 5783.  doi: 10.1103/PhysRevA.45.5783.  Google Scholar

[16]

A. Jákli, C. Bailey and J. Harden, Thermotropic Liquid Crystals,, Springer, (2007).   Google Scholar

[17]

S. Joo and D. Phillips, Chiral nematic toward smectic liquid crystals,, Comm. Math Phys., 269 (2007), 369.  doi: 10.1007/s00220-006-0132-z.  Google Scholar

[18]

S. Kralj and T. Sluckin, Landau-de Gennes theory of the chevron structure in a smectic-A liquid crystal,, Phys. Rev. E, 50 (1994).  doi: 10.1103/PhysRevE.50.2940.  Google Scholar

[19]

S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals,, Wiley-VCH, (1999).   Google Scholar

[20]

T. Lubensky and S. Renn, Twist-grain-boundary phases near the nematic-smectic-A-smectic-C point in liquid crystals,, Phys. Rev. E, 41 (1990).  doi: 10.1103/PhysRevA.41.4392.  Google Scholar

[21]

I. Luk'yanchuk, Phase transition between the cholesteric and twist grain boundary C phases,, Phys. Rev. E, 57 (1994), 574.  doi: 10.1103/PhysRevE.57.574.  Google Scholar

[22]

I. Muševič, R. Blinc and B. Žekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals,, World-Scientific, (2000).   Google Scholar

[23]

M. A. Osipov and S. A. Pikin, Dipolar and quadrapolar ordering in ferroelectric liquid crystals,, J. Phys. II France, 5 (1995), 1223.   Google Scholar

[24]

J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals,, SIAM J. Appl. Math., 66 (2006), 2107.  doi: 10.1137/050641120.  Google Scholar

[25]

S. Renn, Multicritical behavior of abrikosov vortex lattices near the cholesteric - smectic A - smectic C* point,, Phys. Rev. A, 45 (1992).  doi: 10.1103/PhysRevA.45.953.  Google Scholar

[26]

A. Shalaginov, L. Hazelwood and T. Sluckin, Dynamics of chevron formation,, Phys. Rev. E, 58 (1998).   Google Scholar

[27]

M. Slavinec, S. Kralj, S. Zumer and T. Sluckin, Surface depinning of smectic-A edge dislocations,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.031705.  Google Scholar

[28]

N. Vaupotič and M. Čopič, Effect of spontaneous polarization and polar surface anchoring on the director and layer structure in surface stabilized liquid crystal cells,, Phys. Rev. E, 68 (2003).   Google Scholar

[29]

N. Vaupotič, M. Čopič, E. Gorecka and D. Pociecha, Modulated structures in bent-core liquid crystals: Two faces of one phase,, Phys. Rev. Lett., 98 (2007).   Google Scholar

[30]

N. Vaupotič, V. Grubelnik and M. Čopič, Influence of an external field on structure in surface-stabilized smectic-C chevron cells,, Phys. Rev. E, 62 (2000).   Google Scholar

[31]

N. Vaupotič, S. Kralj, M. Čopič and T. Sluckin, Landau-de Gennes theory of the chevron structure in a smectic liquid crystal,, Phys. Rev. E, 54 (1996).   Google Scholar

[1]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[2]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[3]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[4]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[5]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[6]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

[7]

Qiumei Huang, Xiaofeng Yang, Xiaoming He. Numerical approximations for a smectic-A liquid crystal flow model: First-order, linear, decoupled and energy stable schemes. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2177-2192. doi: 10.3934/dcdsb.2018230

[8]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[9]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[10]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[11]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[12]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[13]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[14]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[15]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[16]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[17]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[18]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[19]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[20]

Lisa Hollman, P. J. McKenna. A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: some numerical evidence. Communications on Pure & Applied Analysis, 2011, 10 (2) : 785-802. doi: 10.3934/cpaa.2011.10.785

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]