April  2015, 8(2): 259-282. doi: 10.3934/dcdss.2015.8.259

Energy-minimizing nematic elastomers

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47906

2. 

Franklin W. Olin College of Engineering, Needham, MA 12492, United States

Received  May 2013 Revised  November 2013 Published  July 2014

We prove weak lower semi-continuity and existence of energy-minimizers for a free energy describing stable deformations and the corresponding director configuration of an incompressible nematic liquid-crystal elastomer subject to physically realistic boundary conditions. The energy is a sum of the trace formula developed by Warner, Terentjev and Bladon (coupling the deformation gradient and the director field) and the Landau-de Gennes energy in terms of the gradient of the director field and the bulk term for the director with coefficients depending on temperature. A key step in our analysis is to prove that the energy density has a convex extension to non-unit length director fields. Our results apply to the setting of physical experiments in which a thin incompressible elastomer in $\mathbb{R}^3$ is clamped on its sides and stretched perpendicular to its initial director field, resulting in shape-changes and director re-orientation.
Citation: Patricia Bauman, Andrea C. Rubiano. Energy-minimizing nematic elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 259-282. doi: 10.3934/dcdss.2015.8.259
References:
[1]

E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations,, Arch. for Rat. Mech. and Anal., 86 (1984), 125.  doi: 10.1007/BF00275731.  Google Scholar

[2]

D. Anderson, D. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers,, J. Elasticity, 56 (1999), 33.  doi: 10.1023/A:1007647913363.  Google Scholar

[3]

J. M. Ball and F. Murat, $W^{1,p}$-quasiconvexity and variational problems for multiple integrals,, J. Functional Analysis, 58 (1984), 225.  doi: 10.1016/0022-1236(84)90041-7.  Google Scholar

[4]

P. Bladon, E. Terentjev and M. Warner, Transitions and Instabilities in liquid-crystal elastomers,, Phys. Rev. E, 47 (1993).   Google Scholar

[5]

P. Bladon, E. Terentjev and M. Warner, Soft elasticity- deformation without resistance in liquid crystal elastomers,, Journal de Physique II, 4 (1993), 93.   Google Scholar

[6]

P. Bladon, E. Terentjev and M. Warner, Deformation-induced orientational transitions in liquid crystal elastomer,, J. Phys. II France, 4 (1994), 75.   Google Scholar

[7]

M. C. Calderer and C. Luo, Numerical study of liquid crystal elastomers in a mixed finite element method,, European J. Appl. Math, 23 (2012), 121.  doi: 10.1017/S0956792511000313.  Google Scholar

[8]

P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: Equilibrium configurations,, Math. Models Methods Appl. Sci., 19 (2009), 601.  doi: 10.1142/S0218202509003541.  Google Scholar

[9]

p. Cesana and A. DeSimone, Quasiconvex envelopes of energies for the nematic elastomers in the small strain regime and applications,, J. Mech. Phys., 59 (2011), 787.  doi: 10.1016/j.jmps.2011.01.007.  Google Scholar

[10]

S. Conti, A. DeSimone and G. Dolzmann, Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers,, Physical Review E., 66 (2002).   Google Scholar

[11]

S. Conti, A. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: A numerical study,, Journal of Mechanics and Physics of Solids, 50 (2002), 1431.  doi: 10.1016/S0022-5096(01)00120-X.  Google Scholar

[12]

A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies,, Arch. Rational Mech. Anal., 161 (2002), 181.  doi: 10.1007/s002050100174.  Google Scholar

[13]

A. DeSimone and G. Dolzmann, Material instabilities in nematic elastomers,, Phys. D, 136 (2000), 175.  doi: 10.1016/S0167-2789(99)00153-0.  Google Scholar

[14]

A. DeSimone and G. Dolzmann, Stripe-domains in nematic elastomers: Old and new,, in Modeling of Soft Matter, (2005), 189.  doi: 10.1007/0-387-32153-5_8.  Google Scholar

[15]

H. Finkelmann, I. Kundler, E. M. Terejtev and M. Warner, Critical Stripe-Domain Instability of Nematic Elastomers,, J. Phys. II France, (1997), 1059.   Google Scholar

[16]

I. Kundler and H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers,, Macromolecular Rapid Communications, 16 (1995), 679.   Google Scholar

[17]

S. Müller, T. Qi and B. S. Yan, On a new class of elastic deformations not allowing for cavitation,, Annales de l'I.H.P., 11 (1994), 217.   Google Scholar

[18]

V. Sverak, Regularity properties of deformations with finite energy,, Arch. Rat. Mech. Anal., 100 (1988), 105.  doi: 10.1007/BF00282200.  Google Scholar

[19]

Terentjev, M. Warner and G. C. Verwey, Non-uniform deformations in liquid crystal elastomers,, J. Phys. II France, 6 (1996), 1049.   Google Scholar

[20]

M. Verwey, M. Warner and E. M. Terenjtev, Elastic instability and stripe domains in liquid crystalline elastomers,, J. Phys. II France, 6 (1996), 1273.   Google Scholar

[21]

S. K. Vodopyanov and V. M. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives,, Siberian math. J., 12 (1977), 515.   Google Scholar

[22]

M. Warner and E. M. Terenjtev, Liquid Crystal Elastomers,, Oxford University Press, (2003).   Google Scholar

[23]

E. Zubarev, S. Kuptsov, T. Yuranova, R. Talroze and H. Finkelmann, Monodomain liquid crystalline networks: Reorientation mechanism from uniform to stripe domains,, Liquid Crystals, 26 (1999), 1531.   Google Scholar

show all references

References:
[1]

E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations,, Arch. for Rat. Mech. and Anal., 86 (1984), 125.  doi: 10.1007/BF00275731.  Google Scholar

[2]

D. Anderson, D. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers,, J. Elasticity, 56 (1999), 33.  doi: 10.1023/A:1007647913363.  Google Scholar

[3]

J. M. Ball and F. Murat, $W^{1,p}$-quasiconvexity and variational problems for multiple integrals,, J. Functional Analysis, 58 (1984), 225.  doi: 10.1016/0022-1236(84)90041-7.  Google Scholar

[4]

P. Bladon, E. Terentjev and M. Warner, Transitions and Instabilities in liquid-crystal elastomers,, Phys. Rev. E, 47 (1993).   Google Scholar

[5]

P. Bladon, E. Terentjev and M. Warner, Soft elasticity- deformation without resistance in liquid crystal elastomers,, Journal de Physique II, 4 (1993), 93.   Google Scholar

[6]

P. Bladon, E. Terentjev and M. Warner, Deformation-induced orientational transitions in liquid crystal elastomer,, J. Phys. II France, 4 (1994), 75.   Google Scholar

[7]

M. C. Calderer and C. Luo, Numerical study of liquid crystal elastomers in a mixed finite element method,, European J. Appl. Math, 23 (2012), 121.  doi: 10.1017/S0956792511000313.  Google Scholar

[8]

P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: Equilibrium configurations,, Math. Models Methods Appl. Sci., 19 (2009), 601.  doi: 10.1142/S0218202509003541.  Google Scholar

[9]

p. Cesana and A. DeSimone, Quasiconvex envelopes of energies for the nematic elastomers in the small strain regime and applications,, J. Mech. Phys., 59 (2011), 787.  doi: 10.1016/j.jmps.2011.01.007.  Google Scholar

[10]

S. Conti, A. DeSimone and G. Dolzmann, Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers,, Physical Review E., 66 (2002).   Google Scholar

[11]

S. Conti, A. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: A numerical study,, Journal of Mechanics and Physics of Solids, 50 (2002), 1431.  doi: 10.1016/S0022-5096(01)00120-X.  Google Scholar

[12]

A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies,, Arch. Rational Mech. Anal., 161 (2002), 181.  doi: 10.1007/s002050100174.  Google Scholar

[13]

A. DeSimone and G. Dolzmann, Material instabilities in nematic elastomers,, Phys. D, 136 (2000), 175.  doi: 10.1016/S0167-2789(99)00153-0.  Google Scholar

[14]

A. DeSimone and G. Dolzmann, Stripe-domains in nematic elastomers: Old and new,, in Modeling of Soft Matter, (2005), 189.  doi: 10.1007/0-387-32153-5_8.  Google Scholar

[15]

H. Finkelmann, I. Kundler, E. M. Terejtev and M. Warner, Critical Stripe-Domain Instability of Nematic Elastomers,, J. Phys. II France, (1997), 1059.   Google Scholar

[16]

I. Kundler and H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers,, Macromolecular Rapid Communications, 16 (1995), 679.   Google Scholar

[17]

S. Müller, T. Qi and B. S. Yan, On a new class of elastic deformations not allowing for cavitation,, Annales de l'I.H.P., 11 (1994), 217.   Google Scholar

[18]

V. Sverak, Regularity properties of deformations with finite energy,, Arch. Rat. Mech. Anal., 100 (1988), 105.  doi: 10.1007/BF00282200.  Google Scholar

[19]

Terentjev, M. Warner and G. C. Verwey, Non-uniform deformations in liquid crystal elastomers,, J. Phys. II France, 6 (1996), 1049.   Google Scholar

[20]

M. Verwey, M. Warner and E. M. Terenjtev, Elastic instability and stripe domains in liquid crystalline elastomers,, J. Phys. II France, 6 (1996), 1273.   Google Scholar

[21]

S. K. Vodopyanov and V. M. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives,, Siberian math. J., 12 (1977), 515.   Google Scholar

[22]

M. Warner and E. M. Terenjtev, Liquid Crystal Elastomers,, Oxford University Press, (2003).   Google Scholar

[23]

E. Zubarev, S. Kuptsov, T. Yuranova, R. Talroze and H. Finkelmann, Monodomain liquid crystalline networks: Reorientation mechanism from uniform to stripe domains,, Liquid Crystals, 26 (1999), 1531.   Google Scholar

[1]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[5]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[6]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[7]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[8]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[15]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]