\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Landau--de Gennes theory of liquid crystal elastomers

Abstract Related Papers Cited by
  • In this article, we study minimization of the energy of a Landau-de Gennes liquid crystal elastomer. The total energy consists of the sum of the Lagrangian elastic stored energy function of the elastomer and the Eulerian Landau-de Gennes energy of the liquid crystal.
        There are two related sources of anisotropy in the model, that of the rigid units represented by the traceless nematic order tensor $Q$, and the positive definite step-length tensor $L$ characterizing the anisotropy of the network. This work is motivated by the study of cytoskeletal networks which can be regarded as consisting of rigid rod units crosslinked into a polymeric-type network. Due to the mixed Eulerian-Lagrangian structure of the energy, it is essential that the deformation maps $\varphi$ be invertible. For this, we require sufficient regularity of the fields $(\varphi, Q)$ of the problem, and that the deformation map satisfies the Ciarlet-Nečas injectivity condition. These, in turn, determine what boundary conditions are admissible, which include the case of Dirichlet conditions on both fields. Alternatively, the approach of including the Rapini-Papoular surface energy for the pull-back tensor $\tilde Q$ is also discussed. The regularity requirements also lead us to consider powers of the gradient of the order tensor $Q$ higher than quadratic in the energy.
        We assume polyconvexity of the stored energy function with respect to the effective deformation tensor and apply methods of calculus of variations from isotropic nonlinear elasticity. Recovery of minimizing sequences of deformation gradients from the corresponding sequences of effective deformation tensors requires invertibility of the anisotropic shape tensor $L$. We formulate a necessary and sufficient condition to guarantee this invertibility property in terms of the growth to infinity of the bulk liquid crystal energy $f(Q)$, as the minimum eigenvalue of $Q$ approaches the singular limit of $-\frac{1}{3}$. It turns out that $L$ becomes singular as the minimum eigenvalue of $Q$ reaches $-\frac{1}{3}$. Lower bounds on the eigenvalues of $Q$ are needed to ensure compatibility between the theories of Landau-de Gennes and Maier-Saupe of nematics [5].
    Mathematics Subject Classification: Primary: 70G75, 74G65, 76A15, 74B20, 74E10, 80A22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Agostiniani and A. DeSimone, Ogden-type energies for nematic elastomers, Int J. Nonlinear Mechanics, 47 (2012), 402-412.

    [2]

    D. Anderson, D. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers, J. Elasticity, 56 (1999), 33-58.doi: 10.1023/A:1007647913363.

    [3]

    J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Archive for Rational Mechanics and Analysis, 63 (1977), 337-403.doi: 10.1007/BF00279992.

    [4]

    J. M. Ball, Global invertibility of sobolev functions and the interpenetration of matter, Proceedings Royal Soc. Edinburgh A, 88 (1981), 315-328.doi: 10.1017/S030821050002014X.

    [5]

    J. M. Ball and A. Majumdar, Nematic liquid crystals: From maier-saupe to a continuum theory, Molecular Crystals and Liquid Crystals, 525 (2010), 1-11.doi: 10.1080/15421401003795555.

    [6]

    M. Barchiesi and A. DeSimone, Frank energy for nematic elastomers. A nonlinear model, Preprint, 2013.

    [7]

    M. C. Calderer and B. Mukherjee, Chevron patterns in liquid crystal flows, Physica D, 98 (1996), 201-224.doi: 10.1016/0167-2789(96)00051-6.

    [8]

    M. C. Calderer and B. Mukherjee, On poiseuille flow of liquid crystals, Liquid Crystals, 22 (1997), 121-135.doi: 10.1080/026782997209487.

    [9]

    M. C. Calderer and B. Mukherjee, Mathematical issues in the modeling of flow behavior of polymeric liquid crystals, J. Rheol., 42 (1998), 1519-1536.

    [10]

    M. C. Calderer, Critical size of stripe patterns in liquid crystal elastomers under extension, Preprint, 2013.

    [11]

    M. C. Calderer, C. A. Garavito and C. Luo, Liquid Crystal Elastomers and Phase Transitions in Rod Networks, Technical Report, arXiv:1303.6548, 2013.

    [12]

    M. C. Calderer and C. Liu, Liquid crystal flow: dynamic and static configurations, SIAM Journal on Applied Mathematics, 20 (2000), 1225-1249.

    [13]

    M. C. Calderer, C. Liu and B. Yan, A mathematical theory for nematic elastomers with non-uniform prolate spheroids, in Advances in Applied and Computational Mathematics (eds. F. Liu, Z. Nashed, G.M. Guerekata, D. Pokrajac, Z. Qiao, X. Shi, and X. Xia), 2006, 245-259.

    [14]

    M. C. Calderer and C. Luo, Numerical study of liquid crystal elastomers by a mixed finite element method, European J. Appl. Math., 23 (2012), 121-154.doi: 10.1017/S0956792511000313.

    [15]

    P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: Equilibrium configurations, Math. Models Methods Appl. Sci, 19 (2009), 601-630.doi: 10.1142/S0218202509003541.

    [16]

    P. Cesana and A. DeSimone, Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications, J. Mech. Phys. Solids, 59 (2011), 787-803.doi: 10.1016/j.jmps.2011.01.007.

    [17]

    P-G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal., 97 (1987), 171-188.doi: 10.1007/BF00250807.

    [18]

    S. Conti, A. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: A numerical study, Journal of the Mechanics and Physics of Solids, 50 (2002), 1431-1451.doi: 10.1016/S0022-5096(01)00120-X.

    [19]

    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, USA, 1995.

    [20]

    A. DeSimone and G. Dolzmann, Material instabilities in nematic elastomers, Physica D, 136 (2000), 175-191.doi: 10.1016/S0167-2789(99)00153-0.

    [21]

    A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of $SO(3)$-invariant energies, Arch. Rat. Mech. Anal., 161 (2002), 181-204.doi: 10.1007/s002050100174.

    [22]

    A. DeSimone and L. Teresi, Elastic energies for nematic elastomers, The European Physical Journal E: Soft Matter and Biological Physics, 29 (2009), 191-204.doi: 10.1140/epje/i2009-10467-9.

    [23]

    J. L. Ericksen, Liquid crystals with variable degree of orientation, Archive for Rational Mechanics and Analysis, 113 (1991), 97-120.doi: 10.1007/BF00380413.

    [24]

    I. Fonseca and W. Gangbo, Local invertibility of sobolev functions, SIAM J. Math. Anal., 26 (1995), 280-304.doi: 10.1137/S0036141093257416.

    [25]

    G. Forest, Q. Wang and R. Zhou, A kinetic theory for solutions of nonhomogeneous nematic liquid crystalline polymers with density variations, J.Fluid Engineering, 126 (2004), 180-188.

    [26]

    E. Fried and S. Sellers, Free-energy density functions for nematic elastomers, J. Mech. Phys. Solids, 52 (1999), 1671-1689.doi: 10.1016/j.jmps.2003.12.005.

    [27]

    E. Fried and S. Sellers, Soft elasticity is not necessary for striping in nematic elastomers, Journal of Applied Physics, 100 (2006), 043521-043325.doi: 10.1063/1.2234824.

    [28]

    M. Gardel, J. H. Shin, L. Mahadevan, F. C. MacKintosh, P. Matsudaira and D. A. Weitz, Elastic behavior of cross-linked and bundled actin networks, Science, 304 (2004), 1301-1305.doi: 10.1126/science.1095087.

    [29]

    E. F Gramsbergen, L. Longa and W. H. de Jeu, Landau theory of nematic isotropic phase transitions, Phys. Rep., 135 (1986), 195-257.doi: 10.1016/0370-1573(86)90007-4.

    [30]

    P. Hajlasz, Sobolev mappings, co-area formula, and related topics, Proceedings on Analysis and Geometry, (2000), 227-254.

    [31]

    I. Kundler and H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromolecular Rapid Communications, 16 (1995), 679-686.doi: 10.1002/marc.1995.030160908.

    [32]

    C Luo, Modeling, Analysis and Numerical Simulations of Liquid Crystal Elastomers, Ph.D dissertation, University of Minnesota, 2010.

    [33]

    W. Maier and A. Saupe, A simple molecular statistical theory of the nematic liquid crystalline-liquid phase, I Z Naturf. a, 14 (1959), 882-889.

    [34]

    A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the landau-de gennes theory, European J. Appl. Math., 21 (2010), 181-203.doi: 10.1017/S0956792509990210.

    [35]

    A. Majumdar, The landau-de gennes theory of nematic liquid crystals: Uniaxiality versus biaxiality, Communications on Pure and Applied Analysis, 11 (2012), 1303-1337.doi: 10.3934/cpaa.2012.11.1303.

    [36]

    A. Majumdar and A. Zarnescu, Landau-de gennes theory of nematic liquid crystals: The oseen-frank limit and beyond, Archive for rational mechanics and analysis, 196 (2010), 227-280.doi: 10.1007/s00205-009-0249-2.

    [37]

    M. Marcus and V. J. Mizel, Transformations by functions in sobolev spaces and lower semicontinuity for parametric variational problems, Bulletin of the American Mathematical Society, 79 (1973), 790-795.doi: 10.1090/S0002-9904-1973-13319-1.

    [38]

    N. J. Mottram and C. Newton, Introduction to Q-Tensor Theory, in Research Report no. 10, 2004.

    [39]

    A. Rapini and M. Papoular, Surface anchoring of nematic liqud crystals, J. Physique Coll, 30 (1969), 54-66.

    [40]

    A. Sanchez-Ferrer and H. Finkelmann, Uniaxial and shear deformation in smectic-c main-chain liquid-crystalline elastomers, Macromolecules, 41 (2008), 970-980.doi: 10.1021/ma7025644.

    [41]

    A. Sanchez-Ferrer and H. Finkelmann, Mechanical properties of new main-chain liquid-crystalline elastomers, Mol. Cryst. Liq. Cryst., 508 (2009), 348-356.doi: 10.1080/15421400903065861.

    [42]

    B. Wagner, R. Tharmann, I. Haase, M. Fischer and A. R. Bausch, Cytoskeletal polymer networks: The molecule structure of cross-linkers determines macroscopic properties of cochlear outer hair-cells, Proc.Natl. Acad. Sci USA, 103 (2006), 13974-13978.

    [43]

    M. Warner and E. M. Terentjev, Liquid Crystal Elastomers, Oxford University Press, USA, 2007.

    [44]

    E. R. Zubarev, S. A. Kuptsov, T. I. Yuranova, R. V. Talroze and H. Finkelmann, Monodomain liquid crystalline networks: Reorientation mechanism from uniform to stripe domains, Liquid crystals, 26 (1999), 1531-1540.doi: 10.1080/026782999203869.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return