Citation: |
[1] |
V. Agostiniani and A. DeSimone, Ogden-type energies for nematic elastomers, Int J. Nonlinear Mechanics, 47 (2012), 402-412. |
[2] |
D. Anderson, D. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers, J. Elasticity, 56 (1999), 33-58.doi: 10.1023/A:1007647913363. |
[3] |
J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Archive for Rational Mechanics and Analysis, 63 (1977), 337-403.doi: 10.1007/BF00279992. |
[4] |
J. M. Ball, Global invertibility of sobolev functions and the interpenetration of matter, Proceedings Royal Soc. Edinburgh A, 88 (1981), 315-328.doi: 10.1017/S030821050002014X. |
[5] |
J. M. Ball and A. Majumdar, Nematic liquid crystals: From maier-saupe to a continuum theory, Molecular Crystals and Liquid Crystals, 525 (2010), 1-11.doi: 10.1080/15421401003795555. |
[6] |
M. Barchiesi and A. DeSimone, Frank energy for nematic elastomers. A nonlinear model, Preprint, 2013. |
[7] |
M. C. Calderer and B. Mukherjee, Chevron patterns in liquid crystal flows, Physica D, 98 (1996), 201-224.doi: 10.1016/0167-2789(96)00051-6. |
[8] |
M. C. Calderer and B. Mukherjee, On poiseuille flow of liquid crystals, Liquid Crystals, 22 (1997), 121-135.doi: 10.1080/026782997209487. |
[9] |
M. C. Calderer and B. Mukherjee, Mathematical issues in the modeling of flow behavior of polymeric liquid crystals, J. Rheol., 42 (1998), 1519-1536. |
[10] |
M. C. Calderer, Critical size of stripe patterns in liquid crystal elastomers under extension, Preprint, 2013. |
[11] |
M. C. Calderer, C. A. Garavito and C. Luo, Liquid Crystal Elastomers and Phase Transitions in Rod Networks, Technical Report, arXiv:1303.6548, 2013. |
[12] |
M. C. Calderer and C. Liu, Liquid crystal flow: dynamic and static configurations, SIAM Journal on Applied Mathematics, 20 (2000), 1225-1249. |
[13] |
M. C. Calderer, C. Liu and B. Yan, A mathematical theory for nematic elastomers with non-uniform prolate spheroids, in Advances in Applied and Computational Mathematics (eds. F. Liu, Z. Nashed, G.M. Guerekata, D. Pokrajac, Z. Qiao, X. Shi, and X. Xia), 2006, 245-259. |
[14] |
M. C. Calderer and C. Luo, Numerical study of liquid crystal elastomers by a mixed finite element method, European J. Appl. Math., 23 (2012), 121-154.doi: 10.1017/S0956792511000313. |
[15] |
P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: Equilibrium configurations, Math. Models Methods Appl. Sci, 19 (2009), 601-630.doi: 10.1142/S0218202509003541. |
[16] |
P. Cesana and A. DeSimone, Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications, J. Mech. Phys. Solids, 59 (2011), 787-803.doi: 10.1016/j.jmps.2011.01.007. |
[17] |
P-G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal., 97 (1987), 171-188.doi: 10.1007/BF00250807. |
[18] |
S. Conti, A. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: A numerical study, Journal of the Mechanics and Physics of Solids, 50 (2002), 1431-1451.doi: 10.1016/S0022-5096(01)00120-X. |
[19] |
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, USA, 1995. |
[20] |
A. DeSimone and G. Dolzmann, Material instabilities in nematic elastomers, Physica D, 136 (2000), 175-191.doi: 10.1016/S0167-2789(99)00153-0. |
[21] |
A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of $SO(3)$-invariant energies, Arch. Rat. Mech. Anal., 161 (2002), 181-204.doi: 10.1007/s002050100174. |
[22] |
A. DeSimone and L. Teresi, Elastic energies for nematic elastomers, The European Physical Journal E: Soft Matter and Biological Physics, 29 (2009), 191-204.doi: 10.1140/epje/i2009-10467-9. |
[23] |
J. L. Ericksen, Liquid crystals with variable degree of orientation, Archive for Rational Mechanics and Analysis, 113 (1991), 97-120.doi: 10.1007/BF00380413. |
[24] |
I. Fonseca and W. Gangbo, Local invertibility of sobolev functions, SIAM J. Math. Anal., 26 (1995), 280-304.doi: 10.1137/S0036141093257416. |
[25] |
G. Forest, Q. Wang and R. Zhou, A kinetic theory for solutions of nonhomogeneous nematic liquid crystalline polymers with density variations, J.Fluid Engineering, 126 (2004), 180-188. |
[26] |
E. Fried and S. Sellers, Free-energy density functions for nematic elastomers, J. Mech. Phys. Solids, 52 (1999), 1671-1689.doi: 10.1016/j.jmps.2003.12.005. |
[27] |
E. Fried and S. Sellers, Soft elasticity is not necessary for striping in nematic elastomers, Journal of Applied Physics, 100 (2006), 043521-043325.doi: 10.1063/1.2234824. |
[28] |
M. Gardel, J. H. Shin, L. Mahadevan, F. C. MacKintosh, P. Matsudaira and D. A. Weitz, Elastic behavior of cross-linked and bundled actin networks, Science, 304 (2004), 1301-1305.doi: 10.1126/science.1095087. |
[29] |
E. F Gramsbergen, L. Longa and W. H. de Jeu, Landau theory of nematic isotropic phase transitions, Phys. Rep., 135 (1986), 195-257.doi: 10.1016/0370-1573(86)90007-4. |
[30] |
P. Hajlasz, Sobolev mappings, co-area formula, and related topics, Proceedings on Analysis and Geometry, (2000), 227-254. |
[31] |
I. Kundler and H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromolecular Rapid Communications, 16 (1995), 679-686.doi: 10.1002/marc.1995.030160908. |
[32] |
C Luo, Modeling, Analysis and Numerical Simulations of Liquid Crystal Elastomers, Ph.D dissertation, University of Minnesota, 2010. |
[33] |
W. Maier and A. Saupe, A simple molecular statistical theory of the nematic liquid crystalline-liquid phase, I Z Naturf. a, 14 (1959), 882-889. |
[34] |
A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the landau-de gennes theory, European J. Appl. Math., 21 (2010), 181-203.doi: 10.1017/S0956792509990210. |
[35] |
A. Majumdar, The landau-de gennes theory of nematic liquid crystals: Uniaxiality versus biaxiality, Communications on Pure and Applied Analysis, 11 (2012), 1303-1337.doi: 10.3934/cpaa.2012.11.1303. |
[36] |
A. Majumdar and A. Zarnescu, Landau-de gennes theory of nematic liquid crystals: The oseen-frank limit and beyond, Archive for rational mechanics and analysis, 196 (2010), 227-280.doi: 10.1007/s00205-009-0249-2. |
[37] |
M. Marcus and V. J. Mizel, Transformations by functions in sobolev spaces and lower semicontinuity for parametric variational problems, Bulletin of the American Mathematical Society, 79 (1973), 790-795.doi: 10.1090/S0002-9904-1973-13319-1. |
[38] |
N. J. Mottram and C. Newton, Introduction to Q-Tensor Theory, in Research Report no. 10, 2004. |
[39] |
A. Rapini and M. Papoular, Surface anchoring of nematic liqud crystals, J. Physique Coll, 30 (1969), 54-66. |
[40] |
A. Sanchez-Ferrer and H. Finkelmann, Uniaxial and shear deformation in smectic-c main-chain liquid-crystalline elastomers, Macromolecules, 41 (2008), 970-980.doi: 10.1021/ma7025644. |
[41] |
A. Sanchez-Ferrer and H. Finkelmann, Mechanical properties of new main-chain liquid-crystalline elastomers, Mol. Cryst. Liq. Cryst., 508 (2009), 348-356.doi: 10.1080/15421400903065861. |
[42] |
B. Wagner, R. Tharmann, I. Haase, M. Fischer and A. R. Bausch, Cytoskeletal polymer networks: The molecule structure of cross-linkers determines macroscopic properties of cochlear outer hair-cells, Proc.Natl. Acad. Sci USA, 103 (2006), 13974-13978. |
[43] |
M. Warner and E. M. Terentjev, Liquid Crystal Elastomers, Oxford University Press, USA, 2007. |
[44] |
E. R. Zubarev, S. A. Kuptsov, T. I. Yuranova, R. V. Talroze and H. Finkelmann, Monodomain liquid crystalline networks: Reorientation mechanism from uniform to stripe domains, Liquid crystals, 26 (1999), 1531-1540.doi: 10.1080/026782999203869. |