-
Previous Article
Paralic confinement computations in coastal environment with interlocked areas
- DCDS-S Home
- This Issue
-
Next Article
Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem
Deterministic homogenization for media with barriers
1. | Saratovskaya 9, 160, Moscow, 109518, Russian Federation |
  In this article we consider coefficients with barriers. We show how the averaged coefficient may be inadequate near the barriers and propose a generalization which can detect the potential problems and improve the accuracy of the averaged solution.
References:
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978. |
[3] |
Y. Capdeville and J. J. Marigo, Second order homogenization of the elastic wave equation for non-periodic layered media, Geophysical Journal International, 170 (2007), 823-838.
doi: 10.1111/j.1365-246X.2007.03462.x. |
[4] |
Y. Chen, L. J. Durlofsky, M. Gerritsen and X. H. Wen, A coupled local-global upscaling ap- proach for simulating flow in highly heterogeneous formations, Advances in Water Resources, 26 (2003), 1041-1060.
doi: 10.1016/S0309-1708(03)00101-5. |
[5] |
C. C. Chu, I. G. Graham and T. Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput., 79 (2010), 1915-1955.
doi: 10.1090/S0025-5718-2010-02372-5. |
[6] |
L. J. Durlofsky, Numerical calculation of equivalent gridblock permeability tensors for heterogeneous porous media, Water Resources Research, 27 (1991), 699-708.
doi: 10.1029/91WR00107. |
[7] |
L. J. Durlofsky, Upscaling and gridding of fine scale geological models for flow simulation, Proceedings of the 8th International Forum on Reservoir Simulation in Stresa, Italy, 2005, 59 pp. |
[8] |
Y. Efendiev, J. Galvis and T. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 251 (2013), 116-135.
doi: 10.1016/j.jcp.2013.04.045. |
[9] |
C. L. Farmer, Upscaling: A review, Numerical Methods in Fluids, 40 (2002), 63-78.
doi: 10.1002/fld.267. |
[10] |
H. Hajibeygi, G. Bonfigli, M. A. Hesse and P. Jenny, Iterative multiscale finite-volume method, Journal of Computational Physics, 227 (2008), 8604-8621.
doi: 10.1016/j.jcp.2008.06.013. |
[11] |
T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, Journal of Computational Physics, 134 (1997), 169-189.
doi: 10.1006/jcph.1997.5682. |
[12] |
V. Laptev and S. Belouettar, On averaging of the non-periodic conductivity coefficient using two-scale extension, PAMM, 5 (2005), 681-682.
doi: 10.1002/pamm.200510316. |
[13] |
V. Laptev, Two-scale extensions for non-periodic coefficients,, preprint, ().
|
[14] |
V. Laptev, On numerical averaging of the conductivity coefficient using two-scale extensions,, preprint, ().
|
[15] |
V. D. Laptev, Construction and practical use of two-scaled extensions for rapidly oscillating functions, Journal of Mathematical Sciences, 158 (2009), 211-218.
doi: 10.1007/s10958-009-9384-4. |
[16] | |
[17] |
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623.
doi: 10.1137/0520043. |
[18] |
H. Owhadi and L. Zhang, Metric based up-scaling,, preprint, ().
|
[19] |
H. Owhadi and L. Zhang, Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast, Multiscale Model. Simul., 9 (2011), 1373-1398.
doi: 10.1137/100813968. |
[20] |
X. H. Wen, L. J. Durlofsky and M. G. Edwards, Use of border regions for improved permeability upscaling, Mathematical Geology, 35 (2003), 521-547.
doi: 10.1023/A:1026230617943. |
show all references
References:
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978. |
[3] |
Y. Capdeville and J. J. Marigo, Second order homogenization of the elastic wave equation for non-periodic layered media, Geophysical Journal International, 170 (2007), 823-838.
doi: 10.1111/j.1365-246X.2007.03462.x. |
[4] |
Y. Chen, L. J. Durlofsky, M. Gerritsen and X. H. Wen, A coupled local-global upscaling ap- proach for simulating flow in highly heterogeneous formations, Advances in Water Resources, 26 (2003), 1041-1060.
doi: 10.1016/S0309-1708(03)00101-5. |
[5] |
C. C. Chu, I. G. Graham and T. Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput., 79 (2010), 1915-1955.
doi: 10.1090/S0025-5718-2010-02372-5. |
[6] |
L. J. Durlofsky, Numerical calculation of equivalent gridblock permeability tensors for heterogeneous porous media, Water Resources Research, 27 (1991), 699-708.
doi: 10.1029/91WR00107. |
[7] |
L. J. Durlofsky, Upscaling and gridding of fine scale geological models for flow simulation, Proceedings of the 8th International Forum on Reservoir Simulation in Stresa, Italy, 2005, 59 pp. |
[8] |
Y. Efendiev, J. Galvis and T. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 251 (2013), 116-135.
doi: 10.1016/j.jcp.2013.04.045. |
[9] |
C. L. Farmer, Upscaling: A review, Numerical Methods in Fluids, 40 (2002), 63-78.
doi: 10.1002/fld.267. |
[10] |
H. Hajibeygi, G. Bonfigli, M. A. Hesse and P. Jenny, Iterative multiscale finite-volume method, Journal of Computational Physics, 227 (2008), 8604-8621.
doi: 10.1016/j.jcp.2008.06.013. |
[11] |
T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, Journal of Computational Physics, 134 (1997), 169-189.
doi: 10.1006/jcph.1997.5682. |
[12] |
V. Laptev and S. Belouettar, On averaging of the non-periodic conductivity coefficient using two-scale extension, PAMM, 5 (2005), 681-682.
doi: 10.1002/pamm.200510316. |
[13] |
V. Laptev, Two-scale extensions for non-periodic coefficients,, preprint, ().
|
[14] |
V. Laptev, On numerical averaging of the conductivity coefficient using two-scale extensions,, preprint, ().
|
[15] |
V. D. Laptev, Construction and practical use of two-scaled extensions for rapidly oscillating functions, Journal of Mathematical Sciences, 158 (2009), 211-218.
doi: 10.1007/s10958-009-9384-4. |
[16] | |
[17] |
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623.
doi: 10.1137/0520043. |
[18] |
H. Owhadi and L. Zhang, Metric based up-scaling,, preprint, ().
|
[19] |
H. Owhadi and L. Zhang, Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast, Multiscale Model. Simul., 9 (2011), 1373-1398.
doi: 10.1137/100813968. |
[20] |
X. H. Wen, L. J. Durlofsky and M. G. Edwards, Use of border regions for improved permeability upscaling, Mathematical Geology, 35 (2003), 521-547.
doi: 10.1023/A:1026230617943. |
[1] |
Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016 |
[2] |
Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503 |
[3] |
Ben Schweizer, Marco Veneroni. The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6 (4) : 755-781. doi: 10.3934/nhm.2011.6.755 |
[4] |
Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151 |
[5] |
Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353 |
[6] |
Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485 |
[7] |
Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks and Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143 |
[8] |
Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251 |
[9] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227-254. doi: 10.3934/nhm.2022004 |
[10] |
Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827 |
[11] |
Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure and Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757 |
[12] |
Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223 |
[13] |
Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058 |
[14] |
Katherine A. Bold, Karthikeyan Rajendran, Balázs Ráth, Ioannis G. Kevrekidis. An equation-free approach to coarse-graining the dynamics of networks. Journal of Computational Dynamics, 2014, 1 (1) : 111-134. doi: 10.3934/jcd.2014.1.111 |
[15] |
Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707 |
[16] |
Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic and Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65 |
[17] |
Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1261-1280. doi: 10.3934/cpaa.2019061 |
[18] |
Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3 (3) : 651-673. doi: 10.3934/nhm.2008.3.651 |
[19] |
Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097 |
[20] |
Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure and Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]