April  2015, 8(2): 303-312. doi: 10.3934/dcdss.2015.8.303

Optimization of electromagnetic wave propagation through a liquid crystal layer

1. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, United States

2. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5216

Received  April 2013 Revised  October 2013 Published  July 2014

We study the propagation of electromagnetic plane waves through a liquid crystal layer paying particular attention to the problem of optimizing the transmitted intensity. The controllable anisotropy of a liquid crystal layer, either through anchoring conditions on supporting glass plates sandwiching the layer or by the imposition of an external electromagnetic field, allows us to tune the orientation of the layer to maximize or minimize the transmitted intensity of a given wavelength through the layer. For a homogeneous liquid crystal orientation field, we find analytical formulas for the orientation that maximizes the transmission and discuss the circumstances under which we can make the layer effectively transparent for a given wavelength and the possibility of multiple maximizing orientations. The minimizing orientation is unique for a given wavelength, and we can define its value implicitly.
Citation: Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303
References:
[1]

I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media, J. Opt. A: Pure Appl. opt., 1 (1999), 646-653. doi: 10.1088/1464-4258/1/5/311.

[2]

D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation, J. Opt. Soc. Am., 62 (1972) , 502-510.

[3]

M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139644181.

[4]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, Oxford, 1993.

[5]

J. A. Fleck, Jr and M. D. Feit, Beam propagation in uniaxial anisotropic media, J. Opt. Soc. Am, 73 (1983), 920-926.

[6]

D. K. Hwang and A. D. Rey, Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain (FDTD) method, Appl. Opt., 44 (2005), 4513-4522.

[7]

D. K. Hwang and A. D. Rey, Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method, Liquid Crystals, 32 (2005), 483-497.

[8]

D. K. Hwang, W. H. Han and A. D. Rey, Computational rheooptics of liquid crystal polymers, J. Non-Newtonian Fluid Mech., 143 (2007), 10-21. doi: 10.1016/j.jnnfm.2006.11.006.

[9]

E. E. Kriezis and S. J. Elston, Finite-difference time domain method for light wave propagation within liquid crystal devices, Optics Communications, 165 (1999), 99-105. doi: 10.1016/S0030-4018(99)00219-9.

[10]

E. E. Kriezis and S. J. Elston, Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method, Optics Communications, 177 (2000), 69-77. doi: 10.1016/S0030-4018(00)00595-2.

[11]

P. Yeh, Optical Waves in Layered Media, Wiley, Hoboken, New Jersey, 2005. doi: 10.1063/1.2810419.

[12]

G. D. Ziogos and E. E. Kriezis, Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method, Opt Quant Electron, 40 (2008), 733-748. doi: 10.1007/s11082-008-9261-2.

show all references

References:
[1]

I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media, J. Opt. A: Pure Appl. opt., 1 (1999), 646-653. doi: 10.1088/1464-4258/1/5/311.

[2]

D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation, J. Opt. Soc. Am., 62 (1972) , 502-510.

[3]

M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139644181.

[4]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, Oxford, 1993.

[5]

J. A. Fleck, Jr and M. D. Feit, Beam propagation in uniaxial anisotropic media, J. Opt. Soc. Am, 73 (1983), 920-926.

[6]

D. K. Hwang and A. D. Rey, Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain (FDTD) method, Appl. Opt., 44 (2005), 4513-4522.

[7]

D. K. Hwang and A. D. Rey, Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method, Liquid Crystals, 32 (2005), 483-497.

[8]

D. K. Hwang, W. H. Han and A. D. Rey, Computational rheooptics of liquid crystal polymers, J. Non-Newtonian Fluid Mech., 143 (2007), 10-21. doi: 10.1016/j.jnnfm.2006.11.006.

[9]

E. E. Kriezis and S. J. Elston, Finite-difference time domain method for light wave propagation within liquid crystal devices, Optics Communications, 165 (1999), 99-105. doi: 10.1016/S0030-4018(99)00219-9.

[10]

E. E. Kriezis and S. J. Elston, Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method, Optics Communications, 177 (2000), 69-77. doi: 10.1016/S0030-4018(00)00595-2.

[11]

P. Yeh, Optical Waves in Layered Media, Wiley, Hoboken, New Jersey, 2005. doi: 10.1063/1.2810419.

[12]

G. D. Ziogos and E. E. Kriezis, Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method, Opt Quant Electron, 40 (2008), 733-748. doi: 10.1007/s11082-008-9261-2.

[1]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[2]

Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360

[3]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[4]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[5]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[6]

Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291

[7]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic and Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[8]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[9]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[10]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[11]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[12]

Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707

[13]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[14]

Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45

[15]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[16]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[17]

Junyu Lin. Uniqueness of harmonic map heat flows and liquid crystal flows. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 739-755. doi: 10.3934/dcds.2013.33.739

[18]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[19]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[20]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]