April  2015, 8(2): 303-312. doi: 10.3934/dcdss.2015.8.303

Optimization of electromagnetic wave propagation through a liquid crystal layer

1. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, United States

2. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5216

Received  April 2013 Revised  October 2013 Published  July 2014

We study the propagation of electromagnetic plane waves through a liquid crystal layer paying particular attention to the problem of optimizing the transmitted intensity. The controllable anisotropy of a liquid crystal layer, either through anchoring conditions on supporting glass plates sandwiching the layer or by the imposition of an external electromagnetic field, allows us to tune the orientation of the layer to maximize or minimize the transmitted intensity of a given wavelength through the layer. For a homogeneous liquid crystal orientation field, we find analytical formulas for the orientation that maximizes the transmission and discuss the circumstances under which we can make the layer effectively transparent for a given wavelength and the possibility of multiple maximizing orientations. The minimizing orientation is unique for a given wavelength, and we can define its value implicitly.
Citation: Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303
References:
[1]

I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,, J. Opt. A: Pure Appl. opt., 1 (1999), 646.  doi: 10.1088/1464-4258/1/5/311.  Google Scholar

[2]

D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation,, J. Opt. Soc. Am., 62 (1972), 502.   Google Scholar

[3]

M. Born and E. Wolf, Principles of Optics,, Cambridge University Press, (1999).  doi: 10.1017/CBO9781139644181.  Google Scholar

[4]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,, Oxford University Press, (1993).   Google Scholar

[5]

J. A. Fleck, Jr and M. D. Feit, Beam propagation in uniaxial anisotropic media,, J. Opt. Soc. Am, 73 (1983), 920.   Google Scholar

[6]

D. K. Hwang and A. D. Rey, Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain (FDTD) method,, Appl. Opt., 44 (2005), 4513.   Google Scholar

[7]

D. K. Hwang and A. D. Rey, Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method,, Liquid Crystals, 32 (2005), 483.   Google Scholar

[8]

D. K. Hwang, W. H. Han and A. D. Rey, Computational rheooptics of liquid crystal polymers,, J. Non-Newtonian Fluid Mech., 143 (2007), 10.  doi: 10.1016/j.jnnfm.2006.11.006.  Google Scholar

[9]

E. E. Kriezis and S. J. Elston, Finite-difference time domain method for light wave propagation within liquid crystal devices,, Optics Communications, 165 (1999), 99.  doi: 10.1016/S0030-4018(99)00219-9.  Google Scholar

[10]

E. E. Kriezis and S. J. Elston, Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,, Optics Communications, 177 (2000), 69.  doi: 10.1016/S0030-4018(00)00595-2.  Google Scholar

[11]

P. Yeh, Optical Waves in Layered Media,, Wiley, (2005).  doi: 10.1063/1.2810419.  Google Scholar

[12]

G. D. Ziogos and E. E. Kriezis, Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,, Opt Quant Electron, 40 (2008), 733.  doi: 10.1007/s11082-008-9261-2.  Google Scholar

show all references

References:
[1]

I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,, J. Opt. A: Pure Appl. opt., 1 (1999), 646.  doi: 10.1088/1464-4258/1/5/311.  Google Scholar

[2]

D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation,, J. Opt. Soc. Am., 62 (1972), 502.   Google Scholar

[3]

M. Born and E. Wolf, Principles of Optics,, Cambridge University Press, (1999).  doi: 10.1017/CBO9781139644181.  Google Scholar

[4]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,, Oxford University Press, (1993).   Google Scholar

[5]

J. A. Fleck, Jr and M. D. Feit, Beam propagation in uniaxial anisotropic media,, J. Opt. Soc. Am, 73 (1983), 920.   Google Scholar

[6]

D. K. Hwang and A. D. Rey, Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain (FDTD) method,, Appl. Opt., 44 (2005), 4513.   Google Scholar

[7]

D. K. Hwang and A. D. Rey, Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method,, Liquid Crystals, 32 (2005), 483.   Google Scholar

[8]

D. K. Hwang, W. H. Han and A. D. Rey, Computational rheooptics of liquid crystal polymers,, J. Non-Newtonian Fluid Mech., 143 (2007), 10.  doi: 10.1016/j.jnnfm.2006.11.006.  Google Scholar

[9]

E. E. Kriezis and S. J. Elston, Finite-difference time domain method for light wave propagation within liquid crystal devices,, Optics Communications, 165 (1999), 99.  doi: 10.1016/S0030-4018(99)00219-9.  Google Scholar

[10]

E. E. Kriezis and S. J. Elston, Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,, Optics Communications, 177 (2000), 69.  doi: 10.1016/S0030-4018(00)00595-2.  Google Scholar

[11]

P. Yeh, Optical Waves in Layered Media,, Wiley, (2005).  doi: 10.1063/1.2810419.  Google Scholar

[12]

G. D. Ziogos and E. E. Kriezis, Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,, Opt Quant Electron, 40 (2008), 733.  doi: 10.1007/s11082-008-9261-2.  Google Scholar

[1]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[2]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[3]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[4]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[5]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[6]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[7]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[8]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[9]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[10]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[11]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[15]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[16]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[17]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[18]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[19]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]