-
Previous Article
Conley's theorem for dispersive systems
- DCDS-S Home
- This Issue
-
Next Article
A Landau--de Gennes theory of liquid crystal elastomers
Optimization of electromagnetic wave propagation through a liquid crystal layer
1. | Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, United States |
2. | Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5216 |
References:
[1] |
I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media, J. Opt. A: Pure Appl. opt., 1 (1999), 646-653.
doi: 10.1088/1464-4258/1/5/311. |
[2] |
D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation, J. Opt. Soc. Am., 62 (1972) , 502-510. |
[3] |
M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9781139644181. |
[4] |
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, Oxford, 1993. |
[5] |
J. A. Fleck, Jr and M. D. Feit, Beam propagation in uniaxial anisotropic media, J. Opt. Soc. Am, 73 (1983), 920-926. |
[6] |
D. K. Hwang and A. D. Rey, Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain (FDTD) method, Appl. Opt., 44 (2005), 4513-4522. |
[7] |
D. K. Hwang and A. D. Rey, Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method, Liquid Crystals, 32 (2005), 483-497. |
[8] |
D. K. Hwang, W. H. Han and A. D. Rey, Computational rheooptics of liquid crystal polymers, J. Non-Newtonian Fluid Mech., 143 (2007), 10-21.
doi: 10.1016/j.jnnfm.2006.11.006. |
[9] |
E. E. Kriezis and S. J. Elston, Finite-difference time domain method for light wave propagation within liquid crystal devices, Optics Communications, 165 (1999), 99-105.
doi: 10.1016/S0030-4018(99)00219-9. |
[10] |
E. E. Kriezis and S. J. Elston, Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method, Optics Communications, 177 (2000), 69-77.
doi: 10.1016/S0030-4018(00)00595-2. |
[11] |
P. Yeh, Optical Waves in Layered Media, Wiley, Hoboken, New Jersey, 2005.
doi: 10.1063/1.2810419. |
[12] |
G. D. Ziogos and E. E. Kriezis, Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method, Opt Quant Electron, 40 (2008), 733-748.
doi: 10.1007/s11082-008-9261-2. |
show all references
References:
[1] |
I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media, J. Opt. A: Pure Appl. opt., 1 (1999), 646-653.
doi: 10.1088/1464-4258/1/5/311. |
[2] |
D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation, J. Opt. Soc. Am., 62 (1972) , 502-510. |
[3] |
M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9781139644181. |
[4] |
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, Oxford, 1993. |
[5] |
J. A. Fleck, Jr and M. D. Feit, Beam propagation in uniaxial anisotropic media, J. Opt. Soc. Am, 73 (1983), 920-926. |
[6] |
D. K. Hwang and A. D. Rey, Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain (FDTD) method, Appl. Opt., 44 (2005), 4513-4522. |
[7] |
D. K. Hwang and A. D. Rey, Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method, Liquid Crystals, 32 (2005), 483-497. |
[8] |
D. K. Hwang, W. H. Han and A. D. Rey, Computational rheooptics of liquid crystal polymers, J. Non-Newtonian Fluid Mech., 143 (2007), 10-21.
doi: 10.1016/j.jnnfm.2006.11.006. |
[9] |
E. E. Kriezis and S. J. Elston, Finite-difference time domain method for light wave propagation within liquid crystal devices, Optics Communications, 165 (1999), 99-105.
doi: 10.1016/S0030-4018(99)00219-9. |
[10] |
E. E. Kriezis and S. J. Elston, Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method, Optics Communications, 177 (2000), 69-77.
doi: 10.1016/S0030-4018(00)00595-2. |
[11] |
P. Yeh, Optical Waves in Layered Media, Wiley, Hoboken, New Jersey, 2005.
doi: 10.1063/1.2810419. |
[12] |
G. D. Ziogos and E. E. Kriezis, Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method, Opt Quant Electron, 40 (2008), 733-748.
doi: 10.1007/s11082-008-9261-2. |
[1] |
Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307 |
[2] |
Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360 |
[3] |
Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561 |
[4] |
M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497 |
[5] |
Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597 |
[6] |
Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291 |
[7] |
Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic and Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691 |
[8] |
Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341 |
[9] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[10] |
T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101 |
[11] |
Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007 |
[12] |
Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707 |
[13] |
Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078 |
[14] |
Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45 |
[15] |
Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110 |
[16] |
M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283 |
[17] |
Junyu Lin. Uniqueness of harmonic map heat flows and liquid crystal flows. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 739-755. doi: 10.3934/dcds.2013.33.739 |
[18] |
Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231 |
[19] |
José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327 |
[20] |
Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]