April  2015, 8(2): 303-312. doi: 10.3934/dcdss.2015.8.303

Optimization of electromagnetic wave propagation through a liquid crystal layer

1. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, United States

2. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5216

Received  April 2013 Revised  October 2013 Published  July 2014

We study the propagation of electromagnetic plane waves through a liquid crystal layer paying particular attention to the problem of optimizing the transmitted intensity. The controllable anisotropy of a liquid crystal layer, either through anchoring conditions on supporting glass plates sandwiching the layer or by the imposition of an external electromagnetic field, allows us to tune the orientation of the layer to maximize or minimize the transmitted intensity of a given wavelength through the layer. For a homogeneous liquid crystal orientation field, we find analytical formulas for the orientation that maximizes the transmission and discuss the circumstances under which we can make the layer effectively transparent for a given wavelength and the possibility of multiple maximizing orientations. The minimizing orientation is unique for a given wavelength, and we can define its value implicitly.
Citation: Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303
References:
[1]

J. Opt. A: Pure Appl. opt., 1 (1999), 646-653. doi: 10.1088/1464-4258/1/5/311.  Google Scholar

[2]

J. Opt. Soc. Am., 62 (1972) , 502-510. Google Scholar

[3]

Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139644181.  Google Scholar

[4]

Oxford University Press, Oxford, 1993. Google Scholar

[5]

J. Opt. Soc. Am, 73 (1983), 920-926. Google Scholar

[6]

Appl. Opt., 44 (2005), 4513-4522. Google Scholar

[7]

Liquid Crystals, 32 (2005), 483-497. Google Scholar

[8]

J. Non-Newtonian Fluid Mech., 143 (2007), 10-21. doi: 10.1016/j.jnnfm.2006.11.006.  Google Scholar

[9]

Optics Communications, 165 (1999), 99-105. doi: 10.1016/S0030-4018(99)00219-9.  Google Scholar

[10]

Optics Communications, 177 (2000), 69-77. doi: 10.1016/S0030-4018(00)00595-2.  Google Scholar

[11]

Wiley, Hoboken, New Jersey, 2005. doi: 10.1063/1.2810419.  Google Scholar

[12]

Opt Quant Electron, 40 (2008), 733-748. doi: 10.1007/s11082-008-9261-2.  Google Scholar

show all references

References:
[1]

J. Opt. A: Pure Appl. opt., 1 (1999), 646-653. doi: 10.1088/1464-4258/1/5/311.  Google Scholar

[2]

J. Opt. Soc. Am., 62 (1972) , 502-510. Google Scholar

[3]

Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139644181.  Google Scholar

[4]

Oxford University Press, Oxford, 1993. Google Scholar

[5]

J. Opt. Soc. Am, 73 (1983), 920-926. Google Scholar

[6]

Appl. Opt., 44 (2005), 4513-4522. Google Scholar

[7]

Liquid Crystals, 32 (2005), 483-497. Google Scholar

[8]

J. Non-Newtonian Fluid Mech., 143 (2007), 10-21. doi: 10.1016/j.jnnfm.2006.11.006.  Google Scholar

[9]

Optics Communications, 165 (1999), 99-105. doi: 10.1016/S0030-4018(99)00219-9.  Google Scholar

[10]

Optics Communications, 177 (2000), 69-77. doi: 10.1016/S0030-4018(00)00595-2.  Google Scholar

[11]

Wiley, Hoboken, New Jersey, 2005. doi: 10.1063/1.2810419.  Google Scholar

[12]

Opt Quant Electron, 40 (2008), 733-748. doi: 10.1007/s11082-008-9261-2.  Google Scholar

[1]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[2]

Hala Ghazi, François James, Hélène Mathis. A nonisothermal thermodynamical model of liquid-vapor interaction with metastability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2371-2409. doi: 10.3934/dcdsb.2020183

[3]

Qixiang Wen, Shenquan Liu, Bo Lu. Firing patterns and bifurcation analysis of neurons under electromagnetic induction. Electronic Research Archive, , () : -. doi: 10.3934/era.2021034

[4]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[5]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[6]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[7]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[8]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[9]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[10]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[11]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[12]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[13]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[14]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383

[16]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[17]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[18]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3615-3627. doi: 10.3934/dcds.2021009

[19]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[20]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]