-
Previous Article
Diffusive transport in two-dimensional nematics
- DCDS-S Home
- This Issue
-
Next Article
Optimization of electromagnetic wave propagation through a liquid crystal layer
Conley's theorem for dispersive systems
1. | Department of Mathematics, Chungnam National University, 79, Daehak-ro, Yuseong-gu, Daejeon 305-764, South Korea, South Korea, South Korea |
References:
[1] |
A. Bacciotti and N. Kalouptsidis, Topological dynamics of control systems: Stability and attraction,, Nonlinear Anal., 10 (1986), 547.
doi: 10.1016/0362-546X(86)90142-2. |
[2] |
U. Bronstein and A. Ya. Kopanskii, Chain recurrence in dynamical systems without uniqueness,, Nonlinear Anal., 12 (1988), 147.
doi: 10.1016/0362-546X(88)90031-4. |
[3] |
L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow, Lecture Notes in Economics and Mathematical Systems,, Springer-Verlag, (1978).
|
[4] |
S. Choi, C. Chu and J.-S. Park, Chain recurrent sets for flows on non-compact spaces,, J. Dynam. Differential Equations, 12 (2002), 597.
doi: 10.1023/A:1016339216210. |
[5] |
H.-Y. Chu, Chain recurrence for multi-valued dynamical systems on noncompact spaces,, Nonlinear Anal., 61 (2005), 715.
doi: 10.1016/j.na.2005.01.024. |
[6] |
H.-Y. Chu, Strong centers of attraction for multi-valued dynamical systems on noncompact spaces,, Nonlinear Anal., 68 (2008), 2479.
doi: 10.1016/j.na.2007.01.072. |
[7] |
H.-Y. Chu and J.-S. Park, Attractors for relations in $\sigma$-compact spaces,, Topology Appl., 148 (2005), 201.
doi: 10.1016/j.topol.2003.05.009. |
[8] |
C. Conley, Isolated Invariant Sets and the Morse Index,, C.M.B.S. 38, (1978).
|
[9] |
M. Hurley, Chain recurrence and attraction in noncompact spaces,, Ergodic Theory Dynam. Systems, 11 (1991), 709.
doi: 10.1017/S014338570000643X. |
[10] |
M. Hurley, Noncompact chain recurrence and attraction,, Proc. Amer. Math. Soc., 115 (1992), 1139.
doi: 10.1090/S0002-9939-1992-1098401-X. |
[11] |
M. Hurley, Chain recurrence, semiflow and gradient,, J. Dynam. Differential Equations, 7 (1995), 437.
doi: 10.1007/BF02219371. |
[12] |
P. E. Kloeden, Asymptotic invariance and limit sets of general control systems,, J. Differential Equations, 19 (1975), 91.
doi: 10.1016/0022-0396(75)90021-2. |
[13] |
P. E. Kloeden, Eventual stability in gerneral control systems,, J. Differential Equations, 19 (1975), 106.
doi: 10.1016/0022-0396(75)90022-4. |
[14] |
K. B. Lee and J.-S. Park, Chain recurrence and attractions in general dynamical systems,, Commun. Korean Math. Soc., 22 (2007), 575.
doi: 10.4134/CKMS.2007.22.4.575. |
[15] |
D. Li, Morse decompositions for general dynamical systems and differential inclusions with applications to control systems,, SIAM J. Control Optim., 46 (2007), 35.
doi: 10.1137/060662101. |
[16] |
D. Li and P. E. Kloeden, On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions,, J. Differential Equations, 224 (2006), 1.
doi: 10.1016/j.jde.2005.07.012. |
[17] |
D. Li and X. Zhang, On dynamical properties of general dynamical systems and differential inclusions,, J. Math. Anal. Appl., 274 (2002), 705.
doi: 10.1016/S0022-247X(02)00352-9. |
[18] |
Z. Liu, The random case of Conley's theorem,, Nonlinearity, 19 (2006), 277.
doi: 10.1088/0951-7715/19/2/002. |
[19] |
Z. Liu, The random case of Conley's theorem : II. The complete Lyapunov function,, Nonlinearity, 20 (2007), 1017.
doi: 10.1088/0951-7715/20/4/012. |
[20] |
J. W. Nieuwenhuis, Some remarks on set-valued dynamical systems,, J. Aust. Math. Soc., 22 (1981), 308.
doi: 10.1017/S0334270000002654. |
[21] |
J.-S. Park, D. S. Kang and H.-Y. Chu, Stabilities in multi-valued dynamical systems,, Nonlinear Anal., 67 (2007), 2050.
doi: 10.1016/j.na.2006.06.057. |
[22] |
E. Roxin, Stability in general control systems,, J. Differential Equations, 1 (1965), 115.
doi: 10.1016/0022-0396(65)90015-X. |
[23] |
K. S. Sibirsky, Introduction to Topological Dynamics,, Noordhoff International Publishing, (1975).
|
[24] |
J. Tsinias, A Lyapunov description of stability in control systems,, Nonlinear Anal., 13 (1989), 63.
doi: 10.1016/0362-546X(89)90035-7. |
show all references
References:
[1] |
A. Bacciotti and N. Kalouptsidis, Topological dynamics of control systems: Stability and attraction,, Nonlinear Anal., 10 (1986), 547.
doi: 10.1016/0362-546X(86)90142-2. |
[2] |
U. Bronstein and A. Ya. Kopanskii, Chain recurrence in dynamical systems without uniqueness,, Nonlinear Anal., 12 (1988), 147.
doi: 10.1016/0362-546X(88)90031-4. |
[3] |
L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow, Lecture Notes in Economics and Mathematical Systems,, Springer-Verlag, (1978).
|
[4] |
S. Choi, C. Chu and J.-S. Park, Chain recurrent sets for flows on non-compact spaces,, J. Dynam. Differential Equations, 12 (2002), 597.
doi: 10.1023/A:1016339216210. |
[5] |
H.-Y. Chu, Chain recurrence for multi-valued dynamical systems on noncompact spaces,, Nonlinear Anal., 61 (2005), 715.
doi: 10.1016/j.na.2005.01.024. |
[6] |
H.-Y. Chu, Strong centers of attraction for multi-valued dynamical systems on noncompact spaces,, Nonlinear Anal., 68 (2008), 2479.
doi: 10.1016/j.na.2007.01.072. |
[7] |
H.-Y. Chu and J.-S. Park, Attractors for relations in $\sigma$-compact spaces,, Topology Appl., 148 (2005), 201.
doi: 10.1016/j.topol.2003.05.009. |
[8] |
C. Conley, Isolated Invariant Sets and the Morse Index,, C.M.B.S. 38, (1978).
|
[9] |
M. Hurley, Chain recurrence and attraction in noncompact spaces,, Ergodic Theory Dynam. Systems, 11 (1991), 709.
doi: 10.1017/S014338570000643X. |
[10] |
M. Hurley, Noncompact chain recurrence and attraction,, Proc. Amer. Math. Soc., 115 (1992), 1139.
doi: 10.1090/S0002-9939-1992-1098401-X. |
[11] |
M. Hurley, Chain recurrence, semiflow and gradient,, J. Dynam. Differential Equations, 7 (1995), 437.
doi: 10.1007/BF02219371. |
[12] |
P. E. Kloeden, Asymptotic invariance and limit sets of general control systems,, J. Differential Equations, 19 (1975), 91.
doi: 10.1016/0022-0396(75)90021-2. |
[13] |
P. E. Kloeden, Eventual stability in gerneral control systems,, J. Differential Equations, 19 (1975), 106.
doi: 10.1016/0022-0396(75)90022-4. |
[14] |
K. B. Lee and J.-S. Park, Chain recurrence and attractions in general dynamical systems,, Commun. Korean Math. Soc., 22 (2007), 575.
doi: 10.4134/CKMS.2007.22.4.575. |
[15] |
D. Li, Morse decompositions for general dynamical systems and differential inclusions with applications to control systems,, SIAM J. Control Optim., 46 (2007), 35.
doi: 10.1137/060662101. |
[16] |
D. Li and P. E. Kloeden, On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions,, J. Differential Equations, 224 (2006), 1.
doi: 10.1016/j.jde.2005.07.012. |
[17] |
D. Li and X. Zhang, On dynamical properties of general dynamical systems and differential inclusions,, J. Math. Anal. Appl., 274 (2002), 705.
doi: 10.1016/S0022-247X(02)00352-9. |
[18] |
Z. Liu, The random case of Conley's theorem,, Nonlinearity, 19 (2006), 277.
doi: 10.1088/0951-7715/19/2/002. |
[19] |
Z. Liu, The random case of Conley's theorem : II. The complete Lyapunov function,, Nonlinearity, 20 (2007), 1017.
doi: 10.1088/0951-7715/20/4/012. |
[20] |
J. W. Nieuwenhuis, Some remarks on set-valued dynamical systems,, J. Aust. Math. Soc., 22 (1981), 308.
doi: 10.1017/S0334270000002654. |
[21] |
J.-S. Park, D. S. Kang and H.-Y. Chu, Stabilities in multi-valued dynamical systems,, Nonlinear Anal., 67 (2007), 2050.
doi: 10.1016/j.na.2006.06.057. |
[22] |
E. Roxin, Stability in general control systems,, J. Differential Equations, 1 (1965), 115.
doi: 10.1016/0022-0396(65)90015-X. |
[23] |
K. S. Sibirsky, Introduction to Topological Dynamics,, Noordhoff International Publishing, (1975).
|
[24] |
J. Tsinias, A Lyapunov description of stability in control systems,, Nonlinear Anal., 13 (1989), 63.
doi: 10.1016/0362-546X(89)90035-7. |
[1] |
Peter J. Olver, Natalie E. Sheils. Dispersive Lamb systems. Journal of Geometric Mechanics, 2019, 11 (2) : 239-254. doi: 10.3934/jgm.2019013 |
[2] |
Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313 |
[3] |
Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039 |
[4] |
Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263 |
[5] |
Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1 |
[6] |
Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179 |
[7] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[8] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[9] |
Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121 |
[10] |
Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure & Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203 |
[11] |
Michel Duprez, Guillaume Olive. Compact perturbations of controlled systems. Mathematical Control & Related Fields, 2018, 8 (2) : 397-410. doi: 10.3934/mcrf.2018016 |
[12] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281 |
[13] |
B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077 |
[14] |
Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1 |
[15] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[16] |
Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259 |
[17] |
Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991 |
[18] |
Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233 |
[19] |
Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343 |
[20] |
Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]