April  2015, 8(2): 313-321. doi: 10.3934/dcdss.2015.8.313

Conley's theorem for dispersive systems

1. 

Department of Mathematics, Chungnam National University, 79, Daehak-ro, Yuseong-gu, Daejeon 305-764, South Korea, South Korea, South Korea

Received  April 2013 Revised  November 2013 Published  July 2014

In this article, we study Conley's theorem about the chain recurrence in dynamical systems, that is, the chain recurrent set of continuous map $f$ is the complement of union of $B_{U}(A)-A$, where $A$ is an attractor and $B_{U}(A)$ is a basin of $A$. In this paper, we generalize this theorem to dispersive systems on noncompact spaces.
Citation: Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313
References:
[1]

A. Bacciotti and N. Kalouptsidis, Topological dynamics of control systems: Stability and attraction,, Nonlinear Anal., 10 (1986), 547. doi: 10.1016/0362-546X(86)90142-2. Google Scholar

[2]

U. Bronstein and A. Ya. Kopanskii, Chain recurrence in dynamical systems without uniqueness,, Nonlinear Anal., 12 (1988), 147. doi: 10.1016/0362-546X(88)90031-4. Google Scholar

[3]

L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow, Lecture Notes in Economics and Mathematical Systems,, Springer-Verlag, (1978). Google Scholar

[4]

S. Choi, C. Chu and J.-S. Park, Chain recurrent sets for flows on non-compact spaces,, J. Dynam. Differential Equations, 12 (2002), 597. doi: 10.1023/A:1016339216210. Google Scholar

[5]

H.-Y. Chu, Chain recurrence for multi-valued dynamical systems on noncompact spaces,, Nonlinear Anal., 61 (2005), 715. doi: 10.1016/j.na.2005.01.024. Google Scholar

[6]

H.-Y. Chu, Strong centers of attraction for multi-valued dynamical systems on noncompact spaces,, Nonlinear Anal., 68 (2008), 2479. doi: 10.1016/j.na.2007.01.072. Google Scholar

[7]

H.-Y. Chu and J.-S. Park, Attractors for relations in $\sigma$-compact spaces,, Topology Appl., 148 (2005), 201. doi: 10.1016/j.topol.2003.05.009. Google Scholar

[8]

C. Conley, Isolated Invariant Sets and the Morse Index,, C.M.B.S. 38, (1978). Google Scholar

[9]

M. Hurley, Chain recurrence and attraction in noncompact spaces,, Ergodic Theory Dynam. Systems, 11 (1991), 709. doi: 10.1017/S014338570000643X. Google Scholar

[10]

M. Hurley, Noncompact chain recurrence and attraction,, Proc. Amer. Math. Soc., 115 (1992), 1139. doi: 10.1090/S0002-9939-1992-1098401-X. Google Scholar

[11]

M. Hurley, Chain recurrence, semiflow and gradient,, J. Dynam. Differential Equations, 7 (1995), 437. doi: 10.1007/BF02219371. Google Scholar

[12]

P. E. Kloeden, Asymptotic invariance and limit sets of general control systems,, J. Differential Equations, 19 (1975), 91. doi: 10.1016/0022-0396(75)90021-2. Google Scholar

[13]

P. E. Kloeden, Eventual stability in gerneral control systems,, J. Differential Equations, 19 (1975), 106. doi: 10.1016/0022-0396(75)90022-4. Google Scholar

[14]

K. B. Lee and J.-S. Park, Chain recurrence and attractions in general dynamical systems,, Commun. Korean Math. Soc., 22 (2007), 575. doi: 10.4134/CKMS.2007.22.4.575. Google Scholar

[15]

D. Li, Morse decompositions for general dynamical systems and differential inclusions with applications to control systems,, SIAM J. Control Optim., 46 (2007), 35. doi: 10.1137/060662101. Google Scholar

[16]

D. Li and P. E. Kloeden, On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions,, J. Differential Equations, 224 (2006), 1. doi: 10.1016/j.jde.2005.07.012. Google Scholar

[17]

D. Li and X. Zhang, On dynamical properties of general dynamical systems and differential inclusions,, J. Math. Anal. Appl., 274 (2002), 705. doi: 10.1016/S0022-247X(02)00352-9. Google Scholar

[18]

Z. Liu, The random case of Conley's theorem,, Nonlinearity, 19 (2006), 277. doi: 10.1088/0951-7715/19/2/002. Google Scholar

[19]

Z. Liu, The random case of Conley's theorem : II. The complete Lyapunov function,, Nonlinearity, 20 (2007), 1017. doi: 10.1088/0951-7715/20/4/012. Google Scholar

[20]

J. W. Nieuwenhuis, Some remarks on set-valued dynamical systems,, J. Aust. Math. Soc., 22 (1981), 308. doi: 10.1017/S0334270000002654. Google Scholar

[21]

J.-S. Park, D. S. Kang and H.-Y. Chu, Stabilities in multi-valued dynamical systems,, Nonlinear Anal., 67 (2007), 2050. doi: 10.1016/j.na.2006.06.057. Google Scholar

[22]

E. Roxin, Stability in general control systems,, J. Differential Equations, 1 (1965), 115. doi: 10.1016/0022-0396(65)90015-X. Google Scholar

[23]

K. S. Sibirsky, Introduction to Topological Dynamics,, Noordhoff International Publishing, (1975). Google Scholar

[24]

J. Tsinias, A Lyapunov description of stability in control systems,, Nonlinear Anal., 13 (1989), 63. doi: 10.1016/0362-546X(89)90035-7. Google Scholar

show all references

References:
[1]

A. Bacciotti and N. Kalouptsidis, Topological dynamics of control systems: Stability and attraction,, Nonlinear Anal., 10 (1986), 547. doi: 10.1016/0362-546X(86)90142-2. Google Scholar

[2]

U. Bronstein and A. Ya. Kopanskii, Chain recurrence in dynamical systems without uniqueness,, Nonlinear Anal., 12 (1988), 147. doi: 10.1016/0362-546X(88)90031-4. Google Scholar

[3]

L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow, Lecture Notes in Economics and Mathematical Systems,, Springer-Verlag, (1978). Google Scholar

[4]

S. Choi, C. Chu and J.-S. Park, Chain recurrent sets for flows on non-compact spaces,, J. Dynam. Differential Equations, 12 (2002), 597. doi: 10.1023/A:1016339216210. Google Scholar

[5]

H.-Y. Chu, Chain recurrence for multi-valued dynamical systems on noncompact spaces,, Nonlinear Anal., 61 (2005), 715. doi: 10.1016/j.na.2005.01.024. Google Scholar

[6]

H.-Y. Chu, Strong centers of attraction for multi-valued dynamical systems on noncompact spaces,, Nonlinear Anal., 68 (2008), 2479. doi: 10.1016/j.na.2007.01.072. Google Scholar

[7]

H.-Y. Chu and J.-S. Park, Attractors for relations in $\sigma$-compact spaces,, Topology Appl., 148 (2005), 201. doi: 10.1016/j.topol.2003.05.009. Google Scholar

[8]

C. Conley, Isolated Invariant Sets and the Morse Index,, C.M.B.S. 38, (1978). Google Scholar

[9]

M. Hurley, Chain recurrence and attraction in noncompact spaces,, Ergodic Theory Dynam. Systems, 11 (1991), 709. doi: 10.1017/S014338570000643X. Google Scholar

[10]

M. Hurley, Noncompact chain recurrence and attraction,, Proc. Amer. Math. Soc., 115 (1992), 1139. doi: 10.1090/S0002-9939-1992-1098401-X. Google Scholar

[11]

M. Hurley, Chain recurrence, semiflow and gradient,, J. Dynam. Differential Equations, 7 (1995), 437. doi: 10.1007/BF02219371. Google Scholar

[12]

P. E. Kloeden, Asymptotic invariance and limit sets of general control systems,, J. Differential Equations, 19 (1975), 91. doi: 10.1016/0022-0396(75)90021-2. Google Scholar

[13]

P. E. Kloeden, Eventual stability in gerneral control systems,, J. Differential Equations, 19 (1975), 106. doi: 10.1016/0022-0396(75)90022-4. Google Scholar

[14]

K. B. Lee and J.-S. Park, Chain recurrence and attractions in general dynamical systems,, Commun. Korean Math. Soc., 22 (2007), 575. doi: 10.4134/CKMS.2007.22.4.575. Google Scholar

[15]

D. Li, Morse decompositions for general dynamical systems and differential inclusions with applications to control systems,, SIAM J. Control Optim., 46 (2007), 35. doi: 10.1137/060662101. Google Scholar

[16]

D. Li and P. E. Kloeden, On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions,, J. Differential Equations, 224 (2006), 1. doi: 10.1016/j.jde.2005.07.012. Google Scholar

[17]

D. Li and X. Zhang, On dynamical properties of general dynamical systems and differential inclusions,, J. Math. Anal. Appl., 274 (2002), 705. doi: 10.1016/S0022-247X(02)00352-9. Google Scholar

[18]

Z. Liu, The random case of Conley's theorem,, Nonlinearity, 19 (2006), 277. doi: 10.1088/0951-7715/19/2/002. Google Scholar

[19]

Z. Liu, The random case of Conley's theorem : II. The complete Lyapunov function,, Nonlinearity, 20 (2007), 1017. doi: 10.1088/0951-7715/20/4/012. Google Scholar

[20]

J. W. Nieuwenhuis, Some remarks on set-valued dynamical systems,, J. Aust. Math. Soc., 22 (1981), 308. doi: 10.1017/S0334270000002654. Google Scholar

[21]

J.-S. Park, D. S. Kang and H.-Y. Chu, Stabilities in multi-valued dynamical systems,, Nonlinear Anal., 67 (2007), 2050. doi: 10.1016/j.na.2006.06.057. Google Scholar

[22]

E. Roxin, Stability in general control systems,, J. Differential Equations, 1 (1965), 115. doi: 10.1016/0022-0396(65)90015-X. Google Scholar

[23]

K. S. Sibirsky, Introduction to Topological Dynamics,, Noordhoff International Publishing, (1975). Google Scholar

[24]

J. Tsinias, A Lyapunov description of stability in control systems,, Nonlinear Anal., 13 (1989), 63. doi: 10.1016/0362-546X(89)90035-7. Google Scholar

[1]

Peter J. Olver, Natalie E. Sheils. Dispersive Lamb systems. Journal of Geometric Mechanics, 2019, 11 (2) : 239-254. doi: 10.3934/jgm.2019013

[2]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[3]

Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039

[4]

Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263

[5]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[6]

Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179

[7]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[8]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[9]

Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121

[10]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure & Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[11]

Michel Duprez, Guillaume Olive. Compact perturbations of controlled systems. Mathematical Control & Related Fields, 2018, 8 (2) : 397-410. doi: 10.3934/mcrf.2018016

[12]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[13]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[14]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[15]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[16]

Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259

[17]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

[18]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[19]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[20]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]