April  2015, 8(2): 381-388. doi: 10.3934/dcdss.2015.8.381

Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system

1. 

Department of Mathematics, Chung-Ang University, Seoul 156-756, South Korea

Received  December 2012 Revised  November 2013 Published  July 2014

In this paper, we establish scaling invariant blow-up criteria for a classical solution to simplified version of two and three dimensional Ericksen-Leslie system. We also consider the model replacing the Navier-Stokes equations by Stokes equations in the system and obtain blow-up criterion in three dimensions.
Citation: Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381
References:
[1]

T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3D Euler equation, Commun. Math. Phys., 94 (1984), 61-66. doi: 10.1007/BF01212349.  Google Scholar

[2]

B. da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$, Chinese Ann. of Math., 16 (1995), 407-412.  Google Scholar

[3]

Q. Chen, A. Tan and G. Wu, LPS's criterion for incompressible nematic liquid crystal flows, Acta Mathematica Scientia, 34 (2014), 1072-1080. doi: 10.1016/S0252-9602(14)60070-9.  Google Scholar

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Rational Mech. Anal., 9 (1962), 371-378.  Google Scholar

[5]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.  Google Scholar

[6]

M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbbR^2$, Calc. Var. Partial Differential Equations, 40 (2011), 15-36. doi: 10.1007/s00526-010-0331-5.  Google Scholar

[7]

M. C. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbbR^2$, Adv. Math., 231 (2012), 1364-1400. doi: 10.1016/j.aim.2012.06.009.  Google Scholar

[8]

T. Huang and C. Wang, Blow-up criterion for nematic liquid crystal flows, Commun. Partial Diff. Equations, 37 (2012), 875-884. doi: 10.1080/03605302.2012.659366.  Google Scholar

[9]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta. Math., 63 (1934), 193-248. doi: 10.1007/BF02547354.  Google Scholar

[10]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.  Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

F. H. Lin, J. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

Q. Liu and J. Zhao, Logarithmical blow-up criteria for the nematic liquid crystal flows, Nonlinear Anal. Real World Appl., 16 (2014), 178-190. doi: 10.1016/j.nonrwa.2013.09.017.  Google Scholar

[14]

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow, SIAM J. Math. Anal., 34 (2003), 1318-1330. doi: 10.1137/S0036141001395868.  Google Scholar

[15]

J. Serrin, The initial value problem for the Navier-Stokes equations, in Nonlinear Probl., Proc. Sympos. Madison 1962 (ed. R. Lamger), Univ. Wisconsin Press, 1963, 69-98.  Google Scholar

[16]

X. Xu and Z. Zhang, Global regularity and uniqueness of weak solution for the 2D liquid crystal flows, J. Differential Equations, 252 (2012), 1169-1181. doi: 10.1016/j.jde.2011.08.028.  Google Scholar

show all references

References:
[1]

T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3D Euler equation, Commun. Math. Phys., 94 (1984), 61-66. doi: 10.1007/BF01212349.  Google Scholar

[2]

B. da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$, Chinese Ann. of Math., 16 (1995), 407-412.  Google Scholar

[3]

Q. Chen, A. Tan and G. Wu, LPS's criterion for incompressible nematic liquid crystal flows, Acta Mathematica Scientia, 34 (2014), 1072-1080. doi: 10.1016/S0252-9602(14)60070-9.  Google Scholar

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Rational Mech. Anal., 9 (1962), 371-378.  Google Scholar

[5]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.  Google Scholar

[6]

M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbbR^2$, Calc. Var. Partial Differential Equations, 40 (2011), 15-36. doi: 10.1007/s00526-010-0331-5.  Google Scholar

[7]

M. C. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbbR^2$, Adv. Math., 231 (2012), 1364-1400. doi: 10.1016/j.aim.2012.06.009.  Google Scholar

[8]

T. Huang and C. Wang, Blow-up criterion for nematic liquid crystal flows, Commun. Partial Diff. Equations, 37 (2012), 875-884. doi: 10.1080/03605302.2012.659366.  Google Scholar

[9]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta. Math., 63 (1934), 193-248. doi: 10.1007/BF02547354.  Google Scholar

[10]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.  Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

F. H. Lin, J. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

Q. Liu and J. Zhao, Logarithmical blow-up criteria for the nematic liquid crystal flows, Nonlinear Anal. Real World Appl., 16 (2014), 178-190. doi: 10.1016/j.nonrwa.2013.09.017.  Google Scholar

[14]

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow, SIAM J. Math. Anal., 34 (2003), 1318-1330. doi: 10.1137/S0036141001395868.  Google Scholar

[15]

J. Serrin, The initial value problem for the Navier-Stokes equations, in Nonlinear Probl., Proc. Sympos. Madison 1962 (ed. R. Lamger), Univ. Wisconsin Press, 1963, 69-98.  Google Scholar

[16]

X. Xu and Z. Zhang, Global regularity and uniqueness of weak solution for the 2D liquid crystal flows, J. Differential Equations, 252 (2012), 1169-1181. doi: 10.1016/j.jde.2011.08.028.  Google Scholar

[1]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[2]

Jeongho Kim, Weiyuan Zou. Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes equations in the whole domain. Kinetic & Related Models, 2020, 13 (3) : 623-651. doi: 10.3934/krm.2020021

[3]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[4]

Jinrui Huang, Wenjun Wang, Huanyao Wen. On $ L^p $ estimates for a simplified Ericksen-Leslie system. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1485-1507. doi: 10.3934/cpaa.2020075

[5]

Jishan Fan, Tohru Ozawa. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 859-867. doi: 10.3934/dcds.2009.25.859

[6]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[7]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[8]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[9]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

[10]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[11]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[12]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[13]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[14]

Bin Han, Na Zhao. Improved blow up criterion for the three dimensional incompressible magnetohydrodynamics system. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4455-4478. doi: 10.3934/cpaa.2020203

[15]

Yue Cao. Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28 (1) : 27-46. doi: 10.3934/era.2020003

[16]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[17]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[18]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[19]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[20]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]