April  2015, 8(2): 381-388. doi: 10.3934/dcdss.2015.8.381

Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system

1. 

Department of Mathematics, Chung-Ang University, Seoul 156-756, South Korea

Received  December 2012 Revised  November 2013 Published  July 2014

In this paper, we establish scaling invariant blow-up criteria for a classical solution to simplified version of two and three dimensional Ericksen-Leslie system. We also consider the model replacing the Navier-Stokes equations by Stokes equations in the system and obtain blow-up criterion in three dimensions.
Citation: Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381
References:
[1]

T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3D Euler equation,, Commun. Math. Phys., 94 (1984), 61.  doi: 10.1007/BF01212349.  Google Scholar

[2]

B. da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$,, Chinese Ann. of Math., 16 (1995), 407.   Google Scholar

[3]

Q. Chen, A. Tan and G. Wu, LPS's criterion for incompressible nematic liquid crystal flows,, Acta Mathematica Scientia, 34 (2014), 1072.  doi: 10.1016/S0252-9602(14)60070-9.  Google Scholar

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[5]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.   Google Scholar

[6]

M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbbR^2$,, Calc. Var. Partial Differential Equations, 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[7]

M. C. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbbR^2$,, Adv. Math., 231 (2012), 1364.  doi: 10.1016/j.aim.2012.06.009.  Google Scholar

[8]

T. Huang and C. Wang, Blow-up criterion for nematic liquid crystal flows,, Commun. Partial Diff. Equations, 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[9]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta. Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[10]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Ration. Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Commun. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

F. H. Lin, J. Lin and C. Y. Wang, Liquid crystal flows in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

Q. Liu and J. Zhao, Logarithmical blow-up criteria for the nematic liquid crystal flows,, Nonlinear Anal. Real World Appl., 16 (2014), 178.  doi: 10.1016/j.nonrwa.2013.09.017.  Google Scholar

[14]

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow,, SIAM J. Math. Anal., 34 (2003), 1318.  doi: 10.1137/S0036141001395868.  Google Scholar

[15]

J. Serrin, The initial value problem for the Navier-Stokes equations,, in Nonlinear Probl., (1962), 69.   Google Scholar

[16]

X. Xu and Z. Zhang, Global regularity and uniqueness of weak solution for the 2D liquid crystal flows,, J. Differential Equations, 252 (2012), 1169.  doi: 10.1016/j.jde.2011.08.028.  Google Scholar

show all references

References:
[1]

T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3D Euler equation,, Commun. Math. Phys., 94 (1984), 61.  doi: 10.1007/BF01212349.  Google Scholar

[2]

B. da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$,, Chinese Ann. of Math., 16 (1995), 407.   Google Scholar

[3]

Q. Chen, A. Tan and G. Wu, LPS's criterion for incompressible nematic liquid crystal flows,, Acta Mathematica Scientia, 34 (2014), 1072.  doi: 10.1016/S0252-9602(14)60070-9.  Google Scholar

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[5]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.   Google Scholar

[6]

M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbbR^2$,, Calc. Var. Partial Differential Equations, 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[7]

M. C. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbbR^2$,, Adv. Math., 231 (2012), 1364.  doi: 10.1016/j.aim.2012.06.009.  Google Scholar

[8]

T. Huang and C. Wang, Blow-up criterion for nematic liquid crystal flows,, Commun. Partial Diff. Equations, 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[9]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta. Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[10]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Ration. Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Commun. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

F. H. Lin, J. Lin and C. Y. Wang, Liquid crystal flows in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

Q. Liu and J. Zhao, Logarithmical blow-up criteria for the nematic liquid crystal flows,, Nonlinear Anal. Real World Appl., 16 (2014), 178.  doi: 10.1016/j.nonrwa.2013.09.017.  Google Scholar

[14]

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow,, SIAM J. Math. Anal., 34 (2003), 1318.  doi: 10.1137/S0036141001395868.  Google Scholar

[15]

J. Serrin, The initial value problem for the Navier-Stokes equations,, in Nonlinear Probl., (1962), 69.   Google Scholar

[16]

X. Xu and Z. Zhang, Global regularity and uniqueness of weak solution for the 2D liquid crystal flows,, J. Differential Equations, 252 (2012), 1169.  doi: 10.1016/j.jde.2011.08.028.  Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[10]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[11]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[12]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[17]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[18]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]