April  2015, 8(2): 381-388. doi: 10.3934/dcdss.2015.8.381

Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system

1. 

Department of Mathematics, Chung-Ang University, Seoul 156-756, South Korea

Received  December 2012 Revised  November 2013 Published  July 2014

In this paper, we establish scaling invariant blow-up criteria for a classical solution to simplified version of two and three dimensional Ericksen-Leslie system. We also consider the model replacing the Navier-Stokes equations by Stokes equations in the system and obtain blow-up criterion in three dimensions.
Citation: Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381
References:
[1]

Commun. Math. Phys., 94 (1984), 61-66. doi: 10.1007/BF01212349.  Google Scholar

[2]

Chinese Ann. of Math., 16 (1995), 407-412.  Google Scholar

[3]

Acta Mathematica Scientia, 34 (2014), 1072-1080. doi: 10.1016/S0252-9602(14)60070-9.  Google Scholar

[4]

Arch. Rational Mech. Anal., 9 (1962), 371-378.  Google Scholar

[5]

Math. Nachr., 4 (1951), 213-231.  Google Scholar

[6]

Calc. Var. Partial Differential Equations, 40 (2011), 15-36. doi: 10.1007/s00526-010-0331-5.  Google Scholar

[7]

Adv. Math., 231 (2012), 1364-1400. doi: 10.1016/j.aim.2012.06.009.  Google Scholar

[8]

Commun. Partial Diff. Equations, 37 (2012), 875-884. doi: 10.1080/03605302.2012.659366.  Google Scholar

[9]

Acta. Math., 63 (1934), 193-248. doi: 10.1007/BF02547354.  Google Scholar

[10]

Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.  Google Scholar

[11]

Commun. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

Nonlinear Anal. Real World Appl., 16 (2014), 178-190. doi: 10.1016/j.nonrwa.2013.09.017.  Google Scholar

[14]

SIAM J. Math. Anal., 34 (2003), 1318-1330. doi: 10.1137/S0036141001395868.  Google Scholar

[15]

in Nonlinear Probl., Proc. Sympos. Madison 1962 (ed. R. Lamger), Univ. Wisconsin Press, 1963, 69-98.  Google Scholar

[16]

J. Differential Equations, 252 (2012), 1169-1181. doi: 10.1016/j.jde.2011.08.028.  Google Scholar

show all references

References:
[1]

Commun. Math. Phys., 94 (1984), 61-66. doi: 10.1007/BF01212349.  Google Scholar

[2]

Chinese Ann. of Math., 16 (1995), 407-412.  Google Scholar

[3]

Acta Mathematica Scientia, 34 (2014), 1072-1080. doi: 10.1016/S0252-9602(14)60070-9.  Google Scholar

[4]

Arch. Rational Mech. Anal., 9 (1962), 371-378.  Google Scholar

[5]

Math. Nachr., 4 (1951), 213-231.  Google Scholar

[6]

Calc. Var. Partial Differential Equations, 40 (2011), 15-36. doi: 10.1007/s00526-010-0331-5.  Google Scholar

[7]

Adv. Math., 231 (2012), 1364-1400. doi: 10.1016/j.aim.2012.06.009.  Google Scholar

[8]

Commun. Partial Diff. Equations, 37 (2012), 875-884. doi: 10.1080/03605302.2012.659366.  Google Scholar

[9]

Acta. Math., 63 (1934), 193-248. doi: 10.1007/BF02547354.  Google Scholar

[10]

Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.  Google Scholar

[11]

Commun. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

Nonlinear Anal. Real World Appl., 16 (2014), 178-190. doi: 10.1016/j.nonrwa.2013.09.017.  Google Scholar

[14]

SIAM J. Math. Anal., 34 (2003), 1318-1330. doi: 10.1137/S0036141001395868.  Google Scholar

[15]

in Nonlinear Probl., Proc. Sympos. Madison 1962 (ed. R. Lamger), Univ. Wisconsin Press, 1963, 69-98.  Google Scholar

[16]

J. Differential Equations, 252 (2012), 1169-1181. doi: 10.1016/j.jde.2011.08.028.  Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[4]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[5]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[6]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[7]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[8]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[9]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[10]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[11]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[12]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[13]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[14]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[15]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[16]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[17]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[18]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3579. doi: 10.3934/dcdsb.2020246

[19]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[20]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]