• Previous Article
    Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures
  • DCDS-S Home
  • This Issue
  • Next Article
    Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging
June  2015, 8(3): 419-434. doi: 10.3934/dcdss.2015.8.419

Radar cross section reduction of a cavity in the ground plane: TE polarization

1. 

Department of Mathematics, Zhejiang University, Hangzhou 310027, China

2. 

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States

Received  October 2013 Revised  March 2014 Published  October 2014

The reduction of backscatter radar cross section(RCS) in TE polarization for a rectangular cavity embedded in the ground plane is investigated in this paper. It is established by placing a thin, multilayered radar absorbing material(RAM) with possibly different permittivities at the bottom of the cavity. A minimization problem with respect to the backscatter RCS is formulated to determine the synthesis of RAM. The underlying scattered field is governed by a generalized Helmholtz equation with transparent boundary condition. The gradient with respect to the material permittivity is derived by the adjoint state method. A fast solver for the Helmholtz equation is presented for the optimization scheme. Numerical examples are presented to show the efficiency of the algorithm for RCS reduction.
Citation: Gang Bao, Jun Lai. Radar cross section reduction of a cavity in the ground plane: TE polarization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 419-434. doi: 10.3934/dcdss.2015.8.419
References:
[1]

H. Ammari, G. Bao, and A. W. Wood, An integral equation method for the electromagnetic scattering from cavities,, Math. Meth. Appl. Sci., 23 (2000), 1057.  doi: 10.1002/1099-1476(200008)23:12<1057::AID-MMA151>3.0.CO;2-6.  Google Scholar

[2]

H. Ammari, G. Bao and A. W. Wood, Analysis of the electromagnetic scattering from a cavity,, Japan J. Indust. Appl. Math., 19 (2002), 301.  doi: 10.1007/BF03167458.  Google Scholar

[3]

H. Ammari, G. Bao and A. W. Wood, A cavity problem for maxwells equation,, Meth. Appl. Anal., 9 (2002), 249.   Google Scholar

[4]

H. T. Anastassiu, A review of electromagnetic scattering analysis for inlets, cavities and open ducts,, IEEE Antennas and Propagation Magazine, 45 (2003), 27.  doi: 10.1109/MAP.2003.1282177.  Google Scholar

[5]

G. Bao, J. Gao and P. Li, Analysis of direct and inverse cavity scattering problems,, Numer. Math. Theor. Meth. Appl., 4 (2011), 419.  doi: 10.4208/nmtma.2011.m1021.  Google Scholar

[6]

G. Bao, J. Gao, J. Lin and W. Zhang, Mode matching for the electromagnetic scattering from three-dimensional large cavities,, IEEE Antennas Wireless Propagat., 60 (2012), 2004.  doi: 10.1109/TAP.2012.2186255.  Google Scholar

[7]

G. Bao and J. Lai, Radar cross section reduction of a cavity in the ground plane,, Commun. Comput. Phys., ().   Google Scholar

[8]

G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity,, SIAM J. Sci. Comput., 27 (2005), 553.  doi: 10.1137/S1064827503428539.  Google Scholar

[9]

G. Bao, K. Yun and Z. Zhou, Stability of the scattering from a large electromagnetic cavity in two dimensions,, SIAM J. Math. Anal., 44 (2012), 383.  doi: 10.1137/110823791.  Google Scholar

[10]

G. Bao and W. Zhang, An improved mode-matching method for large cavities,, IEEE Antennas Wireless Propagat. Lett., 27 (2005), 393.  doi: 10.1109/LAWP.2005.859375.  Google Scholar

[11]

R. Burkholder and P. Pathak, Analysis of em penetration into and scattering by electrically large open waveguide cavities using gaussian beam shooting,, Proc. IEEE, 79 (1991), 1401.  doi: 10.1109/5.104215.  Google Scholar

[12]

R. Chou and S. Lee, Modal attenuation in multilayered coating waveguide,, IEEE Trans. Microwave Theory Tech., 36 (1988), 1167.   Google Scholar

[13]

D. C. Dobson, Optimal design of periodic antireflective structures for the helmholtz equation,, Euro. J. Appl. Math., 4 (1993), 321.  doi: 10.1017/S0956792500001169.  Google Scholar

[14]

R. Hemon, P. Pouliguen, H. He, J. Saillard and J. F. Damiens, Computation of em field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics,, Progress In Electromagnetics Research, 80 (2008), 77.   Google Scholar

[15]

P. Huddleston, Scattering from conducting finite cylinders with thin coatings,, IEEE Trans. Antennas Propagat., 35 (1987), 1128.  doi: 10.1109/TAP.1987.1143984.  Google Scholar

[16]

J. Jin, A finite element-boundary integral formulation for scattering by threedimensional cavity-backed apertures,, IEEE Trans. Antennas Propagat., 39 (1991), 97.   Google Scholar

[17]

J. Jin, The Finite Element Method in Electromagnetics,, 2nd edition. Wiley, (2002).   Google Scholar

[18]

J. H. Kim and Y. J. Lee, Optimization of gradient-index antireflection coatings,, J. Opt. Soc. Korea, 4 (2000), 86.  doi: 10.3807/JOSK.2000.4.2.086.  Google Scholar

[19]

E. Knott, J. Shaeffer, and M. Tuley, Radar Cross Section,, Second edition. Scitech Publishing Inc, (2004).   Google Scholar

[20]

H. Ling, R. Chou and S. Lee, Shooting and bouncing rays: Calculating the rcs of an arbitrarily shaped cavity,, IEEE Trans. Antennas Propagat., 37 (1989), 194.  doi: 10.1109/8.18706.  Google Scholar

[21]

J. Liu and J. Jin, A special higher order finite-element method for scattering by deep cavities,, IEEE Trans. Antennas Propagat., 48 (2000), 694.   Google Scholar

[22]

P. Monk, Finite Element Methods for Maxwell's Equation,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[23]

H. Mosallaei and Y. Rahmat-Samii, Rcs reduction of canonical targets using genetic algorithm synthesized ram,, IEEE Trans. Antennas Propagat., 48 (2000), 1594.  doi: 10.1109/8.899676.  Google Scholar

[24]

J. Nocedal and S. J. Wright, Numerical Optimization,, Second Edition, (2006).   Google Scholar

[25]

S. Ohnuki and T. Hinata, RCS of material partially loaded parallel-plate waveguide cavities,, IEEE Trans. Antennas Propagat., 51 (2003), 337.  doi: 10.1109/TAP.2003.809855.  Google Scholar

show all references

References:
[1]

H. Ammari, G. Bao, and A. W. Wood, An integral equation method for the electromagnetic scattering from cavities,, Math. Meth. Appl. Sci., 23 (2000), 1057.  doi: 10.1002/1099-1476(200008)23:12<1057::AID-MMA151>3.0.CO;2-6.  Google Scholar

[2]

H. Ammari, G. Bao and A. W. Wood, Analysis of the electromagnetic scattering from a cavity,, Japan J. Indust. Appl. Math., 19 (2002), 301.  doi: 10.1007/BF03167458.  Google Scholar

[3]

H. Ammari, G. Bao and A. W. Wood, A cavity problem for maxwells equation,, Meth. Appl. Anal., 9 (2002), 249.   Google Scholar

[4]

H. T. Anastassiu, A review of electromagnetic scattering analysis for inlets, cavities and open ducts,, IEEE Antennas and Propagation Magazine, 45 (2003), 27.  doi: 10.1109/MAP.2003.1282177.  Google Scholar

[5]

G. Bao, J. Gao and P. Li, Analysis of direct and inverse cavity scattering problems,, Numer. Math. Theor. Meth. Appl., 4 (2011), 419.  doi: 10.4208/nmtma.2011.m1021.  Google Scholar

[6]

G. Bao, J. Gao, J. Lin and W. Zhang, Mode matching for the electromagnetic scattering from three-dimensional large cavities,, IEEE Antennas Wireless Propagat., 60 (2012), 2004.  doi: 10.1109/TAP.2012.2186255.  Google Scholar

[7]

G. Bao and J. Lai, Radar cross section reduction of a cavity in the ground plane,, Commun. Comput. Phys., ().   Google Scholar

[8]

G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity,, SIAM J. Sci. Comput., 27 (2005), 553.  doi: 10.1137/S1064827503428539.  Google Scholar

[9]

G. Bao, K. Yun and Z. Zhou, Stability of the scattering from a large electromagnetic cavity in two dimensions,, SIAM J. Math. Anal., 44 (2012), 383.  doi: 10.1137/110823791.  Google Scholar

[10]

G. Bao and W. Zhang, An improved mode-matching method for large cavities,, IEEE Antennas Wireless Propagat. Lett., 27 (2005), 393.  doi: 10.1109/LAWP.2005.859375.  Google Scholar

[11]

R. Burkholder and P. Pathak, Analysis of em penetration into and scattering by electrically large open waveguide cavities using gaussian beam shooting,, Proc. IEEE, 79 (1991), 1401.  doi: 10.1109/5.104215.  Google Scholar

[12]

R. Chou and S. Lee, Modal attenuation in multilayered coating waveguide,, IEEE Trans. Microwave Theory Tech., 36 (1988), 1167.   Google Scholar

[13]

D. C. Dobson, Optimal design of periodic antireflective structures for the helmholtz equation,, Euro. J. Appl. Math., 4 (1993), 321.  doi: 10.1017/S0956792500001169.  Google Scholar

[14]

R. Hemon, P. Pouliguen, H. He, J. Saillard and J. F. Damiens, Computation of em field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics,, Progress In Electromagnetics Research, 80 (2008), 77.   Google Scholar

[15]

P. Huddleston, Scattering from conducting finite cylinders with thin coatings,, IEEE Trans. Antennas Propagat., 35 (1987), 1128.  doi: 10.1109/TAP.1987.1143984.  Google Scholar

[16]

J. Jin, A finite element-boundary integral formulation for scattering by threedimensional cavity-backed apertures,, IEEE Trans. Antennas Propagat., 39 (1991), 97.   Google Scholar

[17]

J. Jin, The Finite Element Method in Electromagnetics,, 2nd edition. Wiley, (2002).   Google Scholar

[18]

J. H. Kim and Y. J. Lee, Optimization of gradient-index antireflection coatings,, J. Opt. Soc. Korea, 4 (2000), 86.  doi: 10.3807/JOSK.2000.4.2.086.  Google Scholar

[19]

E. Knott, J. Shaeffer, and M. Tuley, Radar Cross Section,, Second edition. Scitech Publishing Inc, (2004).   Google Scholar

[20]

H. Ling, R. Chou and S. Lee, Shooting and bouncing rays: Calculating the rcs of an arbitrarily shaped cavity,, IEEE Trans. Antennas Propagat., 37 (1989), 194.  doi: 10.1109/8.18706.  Google Scholar

[21]

J. Liu and J. Jin, A special higher order finite-element method for scattering by deep cavities,, IEEE Trans. Antennas Propagat., 48 (2000), 694.   Google Scholar

[22]

P. Monk, Finite Element Methods for Maxwell's Equation,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[23]

H. Mosallaei and Y. Rahmat-Samii, Rcs reduction of canonical targets using genetic algorithm synthesized ram,, IEEE Trans. Antennas Propagat., 48 (2000), 1594.  doi: 10.1109/8.899676.  Google Scholar

[24]

J. Nocedal and S. J. Wright, Numerical Optimization,, Second Edition, (2006).   Google Scholar

[25]

S. Ohnuki and T. Hinata, RCS of material partially loaded parallel-plate waveguide cavities,, IEEE Trans. Antennas Propagat., 51 (2003), 337.  doi: 10.1109/TAP.2003.809855.  Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[5]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[6]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[7]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[8]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[11]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[14]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[15]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[16]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[17]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]