June  2015, 8(3): 475-496. doi: 10.3934/dcdss.2015.8.475

Higher $L^p$ regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany

Received  October 2013 Revised  June 2014 Published  October 2014

We show that $L^p$ vector fields over a Lipschitz domain are integrable to higher exponents if their generalized divergence and rotation can be identified with bounded linear operators acting on standard Sobolev spaces. A Div-Curl Lemma-type argument provides compact embedding results for such vector fields. We use these tools to investigate the regularity of the solution to the low-frequency approximation of the Maxwell equations in time-harmonic regime. We focus on the weak formulation `in H' of the problem, in a reference geometrical setting allowing for material heterogeneities and nonsmooth interfaces.
Citation: Pierre-Étienne Druet. Higher $L^p$ regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 475-496. doi: 10.3934/dcdss.2015.8.475
References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Meth. Appl. Sci., 21 (1998), 823.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.  Google Scholar

[2]

A. Bossavit, Electromagnetism in View of Modeling,, Springer, (2004).   Google Scholar

[3]

M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains,, Math. Methods Appl. Sci., 12 (1990), 365.  doi: 10.1002/mma.1670120406.  Google Scholar

[4]

M. Dauge, Neumann and mixed problems on curvilinear polyhedra,, Integr. Equat. Oper. Th., 15 (1992), 227.  doi: 10.1007/BF01204238.  Google Scholar

[5]

W. Dreyer, C. Guhlke and R. Müller, Overcoming the shortcomings of the Nernst-Planck model,, Phys. Chem. Chem. Phys., 15 (2013), 7075.  doi: 10.1039/c3cp44390f.  Google Scholar

[6]

P.-E. Druet, Higher integrability of the Lorentz force for weak solutions to Maxwell's equations in complex geometries,, Preprint 1270 of the Weierstrass Institute for Applied mathematics and Stochastics, (1270).   Google Scholar

[7]

P.-E. Druet, Analysis of a Coupled System of Partial Differential Equations Modeling the Interaction Between Melt Flow, Global Heat Transfer and Applied Magnetic Fields in Crystal Growth,, PhD thesis, (2009).   Google Scholar

[8]

P.-E. Druet, W. Dreyer, O. Klein and J. Sprekels, Mathematical modeling of Czochralski type growth processes for semiconductor bulk single crystals,, Milan J. Math., 80 (2012), 311.  doi: 10.1007/s00032-012-0184-9.  Google Scholar

[9]

P.-E. Druet, O. Klein, J. Sprekels, F. Tröltzsch and J. Yousept, Optimal control of 3D state-constrained induction heating processes,, SIAM J. Control Optim., 49 (2011), 1707.  doi: 10.1137/090760544.  Google Scholar

[10]

G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics,, Springer, (1976).   Google Scholar

[11]

J. Elschner, J. Rehberg and G. Schmidt, Optimal regularity for elliptic transmission problems including $C^1$ interfaces,, Interfaces Free Bound., 9 (2007), 233.  doi: 10.4171/IFB/163.  Google Scholar

[12]

I. Gasser and P. Marcati, On a generalization of the DIV-CURL lemma,, Osaka J. Math., 45 (2008), 211.   Google Scholar

[13]

R. Griesinger, The boundary value problem rot $u = f$, $u$ vanishing at the boundary and the related decomposition of $L^q$ and $H^{1,q}_0$,, Ann. Univ. Ferrara - Sez. VII - Sc. Mat., 26 (1990), 15.   Google Scholar

[14]

R. Haller-Dintelmann, H.-C. Kaiser, J. Rehberg and G. Schmidt, Elliptic model problems including mixed boundary conditions and material heterogeneities,, Journal de mathématique pures et appliquées, 89 (2008), 25.  doi: 10.1016/j.matpur.2007.09.001.  Google Scholar

[15]

D. Hömberg, C. Meyer, J. Rehberg and W. Ring, Optimal control of the thermistor problem,, SIAM J. Control Optim., 48 (2010), 3449.  doi: 10.1137/080736259.  Google Scholar

[16]

D. Hömberg and E. Rocca, A model for resistance welding including phase transitions and Joule heating,, Math. Methods Appl. Sci., 34 (2011), 2077.  doi: 10.1002/mma.1505.  Google Scholar

[17]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Functional Analysis, 130 (1995), 161.  doi: 10.1006/jfan.1995.1067.  Google Scholar

[18]

F. Jochmann, A compactness result for vector fields with divergence and curl in $L^q(\Omega)$ involving mixed boundary conditions,, Applicable Analysis, 66 (1997), 189.  doi: 10.1080/00036819708840581.  Google Scholar

[19]

O. Klein, P. Philip and J. Sprekels, Modelling and simulation of sublimation growth in SiC bulk single crystals,, Interfaces and Free Boundaries, 6 (2004), 295.  doi: 10.4171/IFB/101.  Google Scholar

[20]

A. Kufner, O. John and S. Fučik, Function Spaces,, Academia Prague, (1977).   Google Scholar

[21]

O. Ladyzhenskaja and V. Solonnikov, Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid,, Trudy Mat. Inst. Steklov, 59 (1960), 115.   Google Scholar

[22]

N. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations,, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 189.   Google Scholar

[23]

P. Monk, Finite Element Methods for Maxwell's Equations,, Clarendon press, (2003).  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[24]

R. Picard, An elementary proof for a compact embedding result in generalized electromagnetic theory,, Math. Z., 187 (1984), 151.  doi: 10.1007/BF01161700.  Google Scholar

[25]

R. Picard, On the low-frequency asymptotics in electromagnetic theory,, J. Reine Angew. Math., 354 (1984), 50.  doi: 10.1515/crll.1984.354.50.  Google Scholar

[26]

R. Picard and A. Milani, Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems,, in Partial differential equations and calculus of variations, 1357 (1999), 317.  doi: 10.1007/BFb0082873.  Google Scholar

[27]

J. Robbin, R. Rogers and B. Temple, On weak continuity and the Hodge decomposition,, Trans. Amer. Math. Soc., 303 (1987), 609.  doi: 10.1090/S0002-9947-1987-0902788-8.  Google Scholar

[28]

W. von Wahl, Estimating $\nabla u$ by div $u$ and curl $u$.,, Math. Meth. Appl. Sci., 15 (1992), 123.  doi: 10.1002/mma.1670150206.  Google Scholar

[29]

D. D. Zanger, The inhomogeneous Neumann problem in Lipschitz domains,, Commun. in Partial Differential Equations, 25 (2000), 1771.  doi: 10.1080/03605302.2000.10824220.  Google Scholar

show all references

References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Meth. Appl. Sci., 21 (1998), 823.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.  Google Scholar

[2]

A. Bossavit, Electromagnetism in View of Modeling,, Springer, (2004).   Google Scholar

[3]

M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains,, Math. Methods Appl. Sci., 12 (1990), 365.  doi: 10.1002/mma.1670120406.  Google Scholar

[4]

M. Dauge, Neumann and mixed problems on curvilinear polyhedra,, Integr. Equat. Oper. Th., 15 (1992), 227.  doi: 10.1007/BF01204238.  Google Scholar

[5]

W. Dreyer, C. Guhlke and R. Müller, Overcoming the shortcomings of the Nernst-Planck model,, Phys. Chem. Chem. Phys., 15 (2013), 7075.  doi: 10.1039/c3cp44390f.  Google Scholar

[6]

P.-E. Druet, Higher integrability of the Lorentz force for weak solutions to Maxwell's equations in complex geometries,, Preprint 1270 of the Weierstrass Institute for Applied mathematics and Stochastics, (1270).   Google Scholar

[7]

P.-E. Druet, Analysis of a Coupled System of Partial Differential Equations Modeling the Interaction Between Melt Flow, Global Heat Transfer and Applied Magnetic Fields in Crystal Growth,, PhD thesis, (2009).   Google Scholar

[8]

P.-E. Druet, W. Dreyer, O. Klein and J. Sprekels, Mathematical modeling of Czochralski type growth processes for semiconductor bulk single crystals,, Milan J. Math., 80 (2012), 311.  doi: 10.1007/s00032-012-0184-9.  Google Scholar

[9]

P.-E. Druet, O. Klein, J. Sprekels, F. Tröltzsch and J. Yousept, Optimal control of 3D state-constrained induction heating processes,, SIAM J. Control Optim., 49 (2011), 1707.  doi: 10.1137/090760544.  Google Scholar

[10]

G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics,, Springer, (1976).   Google Scholar

[11]

J. Elschner, J. Rehberg and G. Schmidt, Optimal regularity for elliptic transmission problems including $C^1$ interfaces,, Interfaces Free Bound., 9 (2007), 233.  doi: 10.4171/IFB/163.  Google Scholar

[12]

I. Gasser and P. Marcati, On a generalization of the DIV-CURL lemma,, Osaka J. Math., 45 (2008), 211.   Google Scholar

[13]

R. Griesinger, The boundary value problem rot $u = f$, $u$ vanishing at the boundary and the related decomposition of $L^q$ and $H^{1,q}_0$,, Ann. Univ. Ferrara - Sez. VII - Sc. Mat., 26 (1990), 15.   Google Scholar

[14]

R. Haller-Dintelmann, H.-C. Kaiser, J. Rehberg and G. Schmidt, Elliptic model problems including mixed boundary conditions and material heterogeneities,, Journal de mathématique pures et appliquées, 89 (2008), 25.  doi: 10.1016/j.matpur.2007.09.001.  Google Scholar

[15]

D. Hömberg, C. Meyer, J. Rehberg and W. Ring, Optimal control of the thermistor problem,, SIAM J. Control Optim., 48 (2010), 3449.  doi: 10.1137/080736259.  Google Scholar

[16]

D. Hömberg and E. Rocca, A model for resistance welding including phase transitions and Joule heating,, Math. Methods Appl. Sci., 34 (2011), 2077.  doi: 10.1002/mma.1505.  Google Scholar

[17]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Functional Analysis, 130 (1995), 161.  doi: 10.1006/jfan.1995.1067.  Google Scholar

[18]

F. Jochmann, A compactness result for vector fields with divergence and curl in $L^q(\Omega)$ involving mixed boundary conditions,, Applicable Analysis, 66 (1997), 189.  doi: 10.1080/00036819708840581.  Google Scholar

[19]

O. Klein, P. Philip and J. Sprekels, Modelling and simulation of sublimation growth in SiC bulk single crystals,, Interfaces and Free Boundaries, 6 (2004), 295.  doi: 10.4171/IFB/101.  Google Scholar

[20]

A. Kufner, O. John and S. Fučik, Function Spaces,, Academia Prague, (1977).   Google Scholar

[21]

O. Ladyzhenskaja and V. Solonnikov, Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid,, Trudy Mat. Inst. Steklov, 59 (1960), 115.   Google Scholar

[22]

N. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations,, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 189.   Google Scholar

[23]

P. Monk, Finite Element Methods for Maxwell's Equations,, Clarendon press, (2003).  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[24]

R. Picard, An elementary proof for a compact embedding result in generalized electromagnetic theory,, Math. Z., 187 (1984), 151.  doi: 10.1007/BF01161700.  Google Scholar

[25]

R. Picard, On the low-frequency asymptotics in electromagnetic theory,, J. Reine Angew. Math., 354 (1984), 50.  doi: 10.1515/crll.1984.354.50.  Google Scholar

[26]

R. Picard and A. Milani, Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems,, in Partial differential equations and calculus of variations, 1357 (1999), 317.  doi: 10.1007/BFb0082873.  Google Scholar

[27]

J. Robbin, R. Rogers and B. Temple, On weak continuity and the Hodge decomposition,, Trans. Amer. Math. Soc., 303 (1987), 609.  doi: 10.1090/S0002-9947-1987-0902788-8.  Google Scholar

[28]

W. von Wahl, Estimating $\nabla u$ by div $u$ and curl $u$.,, Math. Meth. Appl. Sci., 15 (1992), 123.  doi: 10.1002/mma.1670150206.  Google Scholar

[29]

D. D. Zanger, The inhomogeneous Neumann problem in Lipschitz domains,, Commun. in Partial Differential Equations, 25 (2000), 1771.  doi: 10.1080/03605302.2000.10824220.  Google Scholar

[1]

Ana Cristina Barroso, José Matias. Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 97-114. doi: 10.3934/dcds.2005.12.97

[2]

H. W. Broer, Renato Vitolo. Dynamical systems modeling of low-frequency variability in low-order atmospheric models. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 401-419. doi: 10.3934/dcdsb.2008.10.401

[3]

Luigi C. Berselli, Placido Longo. Classical solutions for the system $\bf {\text{curl}\, v = g}$, with vanishing Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 215-229. doi: 10.3934/dcdss.2019015

[4]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[5]

Fernando Miranda, José-Francisco Rodrigues, Lisa Santos. On a p-curl system arising in electromagnetism. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 605-629. doi: 10.3934/dcdss.2012.5.605

[6]

Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034

[7]

JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305

[8]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[9]

Biao Ou. Examinations on a three-dimensional differentiable vector field that equals its own curl. Communications on Pure & Applied Analysis, 2003, 2 (2) : 251-257. doi: 10.3934/cpaa.2003.2.251

[10]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[11]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[12]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[13]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[14]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020034

[15]

Olivier Glass, Franck Sueur. Smoothness of the flow map for low-regularity solutions of the Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2791-2808. doi: 10.3934/dcds.2013.33.2791

[16]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[17]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[18]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[19]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[20]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]