June  2015, 8(3): 521-546. doi: 10.3934/dcdss.2015.8.521

Mathematical modelling of multi conductor cables

1. 

POEMS, INRIA - CNRS:UMR7231 - ENSTA ParisTech, ENSTA ParisTech, 828 Boulevard des Maréchaux, 91762 Palaiseau, France, France

2. 

M3DISIM, INRIA, Alan Turing, 1 rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France

Received  December 2013 Revised  March 2014 Published  October 2014

This paper proposes a formal justification of simplified 1D models for the propagation of electromagnetic waves in thin non-homogeneous lossy conductor cables. Our approach consists in deriving these models from an asymptotic analysis of 3D Maxwell's equations. In essence, we extend and complete previous results to the multi-wires case.
Citation: Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521
References:
[1]

I. Aganovic and Z. Tutek, A justification of the one-dimensional model of elastic beam,, Math. Methods in Applied Sci., 8 (1986), 1.  doi: 10.1002/mma.1670080133.  Google Scholar

[2]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Mathematical Methods in the Applied Sciences, 21 (1998), 823.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.  Google Scholar

[3]

A. Bermúdez, D. Gómez and P. Salgado, Mathematical Models and Numerical Simulation in Electromagnetism,, Springer, (2013).  doi: 10.1007/978-3-319-02949-8.  Google Scholar

[4]

G. Canadas, Speed of Propagation of Solutions of a Linear Integro-differential Equation with Nonconstant Coefficients,, SIAM Journal on Mathematical Analysis, 16 (1985).  doi: 10.1137/0516009.  Google Scholar

[5]

B. Cockburn and P. Joly, Maxwell equations in polarizable media,, SIAM Journal on Mathematical Analysis, 19 (1988), 1372.  doi: 10.1137/0519101.  Google Scholar

[6]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, 3, (1990).   Google Scholar

[7]

M. Delfour and J. P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization,, Advances in Design and Control SIAM, (2001).   Google Scholar

[8]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms,, Springer-Verlag 1986., (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[9]

S. Imperiale and P. Joly, Mathematical modeling of electromagnetic wave propagation in heterogeneous lossy coaxial cables with variable cross section,, Applied Num. Mathematics, ().  doi: 10.1016/j.apnum.2013.03.011.  Google Scholar

[10]

S. Imperiale and P. Joly, Error estimates for 1D asymptotic models in coaxial cables with non-homogeneous cross-section,, Advances in Applied Mathematics and Mechanics, 4 (2012), 647.   Google Scholar

[11]

P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford science publications, (2003).  doi: 10.1137/0729045.  Google Scholar

[12]

C. R. Paul, Analysis of Multiconductor Transmission Lines,, 2nd. New York 2008., (2008).  doi: 10.1109/9780470547212.  Google Scholar

[13]

J. Stratton, Electromagnetic Theory,, second printing ed., (1941).   Google Scholar

[14]

M. F. Veiga, Asymptotic method applied to a beam with a variable cross section,, in Asymptotic Methods for Elastic Structures (Lisbon, (1993), 237.   Google Scholar

[15]

W. T. Weeks, Calculation of Coefficients of Capacitance of Multiconductor Transmission Lines in the Presence of a Dielectric Interface,, IEEE Trans. MTT, 18 (1970), 35.  doi: 10.1109/TMTT.1970.1127130.  Google Scholar

[16]

W. T. Weeks, Multiconductor transmission line theory in the TEM approximation,, IBM Journal of Research and Development, (1972), 604.  doi: 10.1147/rd.166.0604.  Google Scholar

show all references

References:
[1]

I. Aganovic and Z. Tutek, A justification of the one-dimensional model of elastic beam,, Math. Methods in Applied Sci., 8 (1986), 1.  doi: 10.1002/mma.1670080133.  Google Scholar

[2]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Mathematical Methods in the Applied Sciences, 21 (1998), 823.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.  Google Scholar

[3]

A. Bermúdez, D. Gómez and P. Salgado, Mathematical Models and Numerical Simulation in Electromagnetism,, Springer, (2013).  doi: 10.1007/978-3-319-02949-8.  Google Scholar

[4]

G. Canadas, Speed of Propagation of Solutions of a Linear Integro-differential Equation with Nonconstant Coefficients,, SIAM Journal on Mathematical Analysis, 16 (1985).  doi: 10.1137/0516009.  Google Scholar

[5]

B. Cockburn and P. Joly, Maxwell equations in polarizable media,, SIAM Journal on Mathematical Analysis, 19 (1988), 1372.  doi: 10.1137/0519101.  Google Scholar

[6]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, 3, (1990).   Google Scholar

[7]

M. Delfour and J. P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization,, Advances in Design and Control SIAM, (2001).   Google Scholar

[8]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms,, Springer-Verlag 1986., (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[9]

S. Imperiale and P. Joly, Mathematical modeling of electromagnetic wave propagation in heterogeneous lossy coaxial cables with variable cross section,, Applied Num. Mathematics, ().  doi: 10.1016/j.apnum.2013.03.011.  Google Scholar

[10]

S. Imperiale and P. Joly, Error estimates for 1D asymptotic models in coaxial cables with non-homogeneous cross-section,, Advances in Applied Mathematics and Mechanics, 4 (2012), 647.   Google Scholar

[11]

P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford science publications, (2003).  doi: 10.1137/0729045.  Google Scholar

[12]

C. R. Paul, Analysis of Multiconductor Transmission Lines,, 2nd. New York 2008., (2008).  doi: 10.1109/9780470547212.  Google Scholar

[13]

J. Stratton, Electromagnetic Theory,, second printing ed., (1941).   Google Scholar

[14]

M. F. Veiga, Asymptotic method applied to a beam with a variable cross section,, in Asymptotic Methods for Elastic Structures (Lisbon, (1993), 237.   Google Scholar

[15]

W. T. Weeks, Calculation of Coefficients of Capacitance of Multiconductor Transmission Lines in the Presence of a Dielectric Interface,, IEEE Trans. MTT, 18 (1970), 35.  doi: 10.1109/TMTT.1970.1127130.  Google Scholar

[16]

W. T. Weeks, Multiconductor transmission line theory in the TEM approximation,, IBM Journal of Research and Development, (1972), 604.  doi: 10.1147/rd.166.0604.  Google Scholar

[1]

Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427

[2]

Johannes Eilinghoff, Roland Schnaubelt. Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5685-5709. doi: 10.3934/dcds.2018248

[3]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

[4]

Domenica Borra, Tommaso Lorenzi. Asymptotic analysis of continuous opinion dynamics models under bounded confidence. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1487-1499. doi: 10.3934/cpaa.2013.12.1487

[5]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[6]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[7]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[8]

Xueke Pu, Min Li. Asymptotic behaviors for the full compressible quantum Navier-Stokes-Maxwell equations with general initial data. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5149-5181. doi: 10.3934/dcdsb.2019055

[9]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Asymptotic analysis for the 3D primitive equations in a channel. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 401-422. doi: 10.3934/dcdss.2013.6.401

[10]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[11]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[12]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[13]

José A. Carrillo, Stéphane Cordier, Giuseppe Toscani. Over-populated tails for conservative-in-the-mean inelastic Maxwell models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 59-81. doi: 10.3934/dcds.2009.24.59

[14]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[15]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[16]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[17]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[18]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[19]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

[20]

Chiun-Chang Lee. Asymptotic analysis of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3251-3276. doi: 10.3934/dcds.2016.36.3251

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

[Back to Top]