June  2015, 8(3): 547-561. doi: 10.3934/dcdss.2015.8.547

Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method

1. 

Faculty of Science, South University of Science and Technology of China, Shenzhen, 518055

2. 

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China

3. 

Department of Computing Sciences, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China

Received  December 2013 Revised  February 2014 Published  October 2014

Some effective imaging schemes for inverse scattering problems were recently proposed in [13,14] for locating multiple multiscale electromagnetic (EM) scatterers, namely a combination of components of possible small size and regular size compared to the detecting EM wavelength. In this paper, instead of using a single far-field measurement, we relax the assumption of one fixed frequency to multiple ones, and develop efficient numerical techniques to speed up those imaging schemes by adopting multi-frequency and Multilevel ideas in a two-stage manner. Numerical tests are presented to demonstrate the efficiency and the salient features of the proposed fast imaging scheme.
Citation: Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547
References:
[1]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements,, Lecture Notes in Mathematics, (1846). doi: 10.1007/b98245.

[2]

H. Ammari and H. Kang, Polarization and Moment Tensors. With Applications to Inverse Problems and Effective Medium Theory,, Applied Mathematical Sciences, (2007).

[3]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, Dover, (1965). doi: 10.1119/1.1972842.

[4]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering,, SIAM J. Math. Anal., 31 (2000), 836. doi: 10.1137/S0036141098343604.

[5]

H. Ammari, H. Kang, E. Kim and J. Lee, The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements,, Math. Comp., 81 (2012), 839. doi: 10.1090/S0025-5718-2011-02534-2.

[6]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction,, Springer, (2006).

[7]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering,, Philadelphia: SIAM, (2011). doi: 10.1137/1.9780898719406.

[8]

X. Chen and Y. Zhong, MUSIC electromagnetic imaging with enhanced resolution for small inclusions,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/1/015008.

[9]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory,, SIAM Rev., 42 (2000), 369. doi: 10.1137/S0036144500367337.

[10]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003.

[11]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory,, John Wiley & Sons, (1983).

[12]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Cambridge: Cambridge University Press, (1998). doi: 10.1007/978-3-662-03537-5.

[13]

J. Li, H. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers,, SIAM J. Appl. Mat., 73 (2013), 1721. doi: 10.1137/130907690.

[14]

J. Li, H. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement,, SIAM J. Imaging Sci., 6 (2013), 2285. doi: 10.1137/130920356.

[15]

J. Li, H. Liu and Q. Wang, Enhanced multilevel linear sampling methods for inverse scattering problems,, J. Comput. Phys., 22 (2014), 554. doi: 10.1016/j.jcp.2013.09.048.

[16]

J. Li, H. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems,, SIAM J. Sci. Comp., 30 (2008), 1228. doi: 10.1137/060674247.

[17]

J-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems,, volume 144, (2001). doi: 10.1007/978-1-4757-4393-7.

[18]

C. G. Someda, Electromagnetic Waves,, Boca Raton, (2006).

[19]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data,, Inverse Problems & Imaging, 7 (2013). doi: 10.3934/ipi.2013.7.757.

[20]

M. Ikehata, Reconstruction of obstacles from boundary measurements,, Wave Motion, 3 (1999), 205. doi: 10.1016/S0165-2125(99)00006-2.

[21]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).

[22]

R. Potthast, A survey on sampling and probe methods for inverse problems,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/2/R01.

[23]

G. Uhlmann, Inside Out: Inverse Problems and Applications,, MSRI Publications, (2003). doi: 10.1090/conm/333.

show all references

References:
[1]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements,, Lecture Notes in Mathematics, (1846). doi: 10.1007/b98245.

[2]

H. Ammari and H. Kang, Polarization and Moment Tensors. With Applications to Inverse Problems and Effective Medium Theory,, Applied Mathematical Sciences, (2007).

[3]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, Dover, (1965). doi: 10.1119/1.1972842.

[4]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering,, SIAM J. Math. Anal., 31 (2000), 836. doi: 10.1137/S0036141098343604.

[5]

H. Ammari, H. Kang, E. Kim and J. Lee, The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements,, Math. Comp., 81 (2012), 839. doi: 10.1090/S0025-5718-2011-02534-2.

[6]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction,, Springer, (2006).

[7]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering,, Philadelphia: SIAM, (2011). doi: 10.1137/1.9780898719406.

[8]

X. Chen and Y. Zhong, MUSIC electromagnetic imaging with enhanced resolution for small inclusions,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/1/015008.

[9]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory,, SIAM Rev., 42 (2000), 369. doi: 10.1137/S0036144500367337.

[10]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003.

[11]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory,, John Wiley & Sons, (1983).

[12]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Cambridge: Cambridge University Press, (1998). doi: 10.1007/978-3-662-03537-5.

[13]

J. Li, H. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers,, SIAM J. Appl. Mat., 73 (2013), 1721. doi: 10.1137/130907690.

[14]

J. Li, H. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement,, SIAM J. Imaging Sci., 6 (2013), 2285. doi: 10.1137/130920356.

[15]

J. Li, H. Liu and Q. Wang, Enhanced multilevel linear sampling methods for inverse scattering problems,, J. Comput. Phys., 22 (2014), 554. doi: 10.1016/j.jcp.2013.09.048.

[16]

J. Li, H. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems,, SIAM J. Sci. Comp., 30 (2008), 1228. doi: 10.1137/060674247.

[17]

J-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems,, volume 144, (2001). doi: 10.1007/978-1-4757-4393-7.

[18]

C. G. Someda, Electromagnetic Waves,, Boca Raton, (2006).

[19]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data,, Inverse Problems & Imaging, 7 (2013). doi: 10.3934/ipi.2013.7.757.

[20]

M. Ikehata, Reconstruction of obstacles from boundary measurements,, Wave Motion, 3 (1999), 205. doi: 10.1016/S0165-2125(99)00006-2.

[21]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).

[22]

R. Potthast, A survey on sampling and probe methods for inverse problems,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/2/R01.

[23]

G. Uhlmann, Inside Out: Inverse Problems and Applications,, MSRI Publications, (2003). doi: 10.1090/conm/333.

[1]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[2]

Jinchao Xu. The single-grid multilevel method and its applications. Inverse Problems & Imaging, 2013, 7 (3) : 987-1005. doi: 10.3934/ipi.2013.7.987

[3]

Chao Mi, Jun Wang, Weijian Mi, Youfang Huang, Zhiwei Zhang, Yongsheng Yang, Jun Jiang, Postolache Octavian. Research on regional clustering and two-stage SVM method for container truck recognition. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1117-1133. doi: 10.3934/dcdss.2019077

[4]

Bin Li, Jie Sun, Honglei Xu, Min Zhang. A class of two-stage distributionally robust games. Journal of Industrial & Management Optimization, 2019, 15 (1) : 387-400. doi: 10.3934/jimo.2018048

[5]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[6]

Zhiping Chen, Youpan Han. Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 197-209. doi: 10.3934/naco.2015.5.197

[7]

Urszula Foryś, Beata Zduniak. Two-stage model of carcinogenic mutations with the influence of delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2501-2519. doi: 10.3934/dcdsb.2014.19.2501

[8]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[9]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[10]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[11]

René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363

[12]

Chien Hsun Tseng. Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system. Journal of Industrial & Management Optimization, 2013, 9 (1) : 205-225. doi: 10.3934/jimo.2013.9.205

[13]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[14]

Biswajit Sarkar, Bijoy Kumar Shaw, Taebok Kim, Mitali Sarkar, Dongmin Shin. An integrated inventory model with variable transportation cost, two-stage inspection, and defective items. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1975-1990. doi: 10.3934/jimo.2017027

[15]

Rüdiger Schultz. Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 713-738. doi: 10.3934/naco.2012.2.713

[16]

Ming-Yong Lai, Chang-Shi Liu, Xiao-Jiao Tong. A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows. Journal of Industrial & Management Optimization, 2010, 6 (2) : 435-451. doi: 10.3934/jimo.2010.6.435

[17]

Qingqing Ye. Algorithmic computation of MAP/PH/1 queue with finite system capacity and two-stage vacations. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019063

[18]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[19]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[20]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]