\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method

Abstract Related Papers Cited by
  • Some effective imaging schemes for inverse scattering problems were recently proposed in [13,14] for locating multiple multiscale electromagnetic (EM) scatterers, namely a combination of components of possible small size and regular size compared to the detecting EM wavelength. In this paper, instead of using a single far-field measurement, we relax the assumption of one fixed frequency to multiple ones, and develop efficient numerical techniques to speed up those imaging schemes by adopting multi-frequency and Multilevel ideas in a two-stage manner. Numerical tests are presented to demonstrate the efficiency and the salient features of the proposed fast imaging scheme.
    Mathematics Subject Classification: Primary: 78A46; Secondary: 35Q60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, 1846, Springer-Verlag, Berlin, 2004.doi: 10.1007/b98245.

    [2]

    H. Ammari and H. Kang, Polarization and Moment Tensors. With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Springer, New York, 2007.

    [3]

    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, NewYork, 1965.doi: 10.1119/1.1972842.

    [4]

    H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861.doi: 10.1137/S0036141098343604.

    [5]

    H. Ammari, H. Kang, E. Kim and J. Lee, The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements, Math. Comp., 81 (2012), 839-860.doi: 10.1090/S0025-5718-2011-02534-2.

    [6]

    F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction, Springer, 2006.

    [7]

    F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, Philadelphia: SIAM, 2011.doi: 10.1137/1.9780898719406.

    [8]

    X. Chen and Y. Zhong, MUSIC electromagnetic imaging with enhanced resolution for small inclusions, Inverse Problems, 25 (2009), 12 pp.doi: 10.1088/0266-5611/25/1/015008.

    [9]

    D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory, SIAM Rev., 42 (2000), 369-414.doi: 10.1137/S0036144500367337.

    [10]

    D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.doi: 10.1088/0266-5611/12/4/003.

    [11]

    D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983.

    [12]

    D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Cambridge: Cambridge University Press, 1998.doi: 10.1007/978-3-662-03537-5.

    [13]

    J. Li, H. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers, SIAM J. Appl. Mat., 73 (2013), 1721-1746.doi: 10.1137/130907690.

    [14]

    J. Li, H. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement, SIAM J. Imaging Sci., 6 (2013), 2285-2309.doi: 10.1137/130920356.

    [15]

    J. Li, H. Liu and Q. Wang, Enhanced multilevel linear sampling methods for inverse scattering problems, J. Comput. Phys., 22 (2014), 554-571.doi: 10.1016/j.jcp.2013.09.048.

    [16]

    J. Li, H. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems, SIAM J. Sci. Comp., 30 (2008),1228-1250.doi: 10.1137/060674247.

    [17]

    J-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, volume 144, Springer, 2001.doi: 10.1007/978-1-4757-4393-7.

    [18]

    C. G. Someda, Electromagnetic Waves, Boca Raton, FL: CRC Press, 2nd edition, 2006.

    [19]

    J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Problems & Imaging, 7 (2013).doi: 10.3934/ipi.2013.7.757.

    [20]

    M. Ikehata, Reconstruction of obstacles from boundary measurements, Wave Motion, 3 (1999), 205-223.doi: 10.1016/S0165-2125(99)00006-2.

    [21]

    A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.

    [22]

    R. Potthast, A survey on sampling and probe methods for inverse problems, Inverse Problems, 22 (2006), R1-R47.doi: 10.1088/0266-5611/22/2/R01.

    [23]

    G. Uhlmann, Inside Out: Inverse Problems and Applications, MSRI Publications, 47, Cambridge University Press, 2003.doi: 10.1090/conm/333.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return