Citation: |
[1] |
C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864.doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B. |
[2] |
C. Amrouche, P. Ciarlet and P. J. Ciarlet, Weak vector and scalar potentials. Applications to Poincaré's theorem and Korn's inequality in Sobolev spaces with negative exponents, Anal. Appl. (Singap.), 8 (2010), 1-17.doi: 10.1142/S0219530510001497. |
[3] |
M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen, 22 (2003), 751-756.doi: 10.4171/ZAA/1170. |
[4] |
M. Costabel, A coercive bilinear form for Maxwell's equations, J. Math. Anal. Appl., 157 (1991), 527-541.doi: 10.1016/0022-247X(91)90104-8. |
[5] |
N. Filonov, On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator, St. Petersburg Math. J., 16 (2005), 413-416.doi: 10.1090/S1061-0022-05-00857-5. |
[6] |
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer (Series in Computational Mathematics), Heidelberg, 1986.doi: 10.1007/978-3-642-61623-5. |
[7] |
V. Gol'dshtein, I. Mitrea and M. Mitrea, Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds, J. Math. Sci. (N.Y.), 172 (2011), 347-400.doi: 10.1007/s10958-010-0200-y. |
[8] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman (Advanced Publishing Program), Boston, 1985. |
[9] |
T. Jakab, I. Mitrea and M. Mitrea, On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains, Indiana Univ. Math. J., 58 (2009), 2043-2071.doi: 10.1512/iumj.2009.58.3678. |
[10] |
F. Jochmann, A compactness result for vector fields with divergence and curl in $L^q(\Omega)$ involving mixed boundary conditions, Appl. Anal., 66 (1997), 189-203.doi: 10.1080/00036819708840581. |
[11] |
P. Kuhn and D. Pauly, Regularity results for generalized electro-magnetic problems, Analysis (Munich), 30 (2010), 225-252.doi: 10.1524/anly.2010.1024. |
[12] |
R. Leis, Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien, Math. Z., 106 (1968), 213-224.doi: 10.1007/BF01110135. |
[13] |
R. Leis, Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart, 1986.doi: 10.1007/978-3-663-10649-4. |
[14] |
D. Pauly, Low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains, Adv. Math. Sci. Appl., 16 (2006), 591-622. |
[15] |
D. Pauly, Generalized electro-magneto statics in nonsmooth exterior domains, Analysis (Munich), 27 (2007), 425-464.doi: 10.1524/anly.2007.27.4.425. |
[16] |
D. Pauly, Complete low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains, Asymptot. Anal., 60 (2008), 125-184. |
[17] |
D. Pauly, Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media, Math. Methods Appl. Sci., 31 (2008), 1509-1543.doi: 10.1002/mma.982. |
[18] |
D. Pauly, On constants in Maxwell inequalities for bounded and convex domains, Zapiski POMI, 435 (2014), 46-54, & J. Math. Sci. (N.Y.). |
[19] |
L. Payne and H. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal., 5 (1960), 286-292.doi: 10.1007/BF00252910. |
[20] |
R. Picard, Randwertaufgaben der verallgemeinerten Potentialtheorie, Math. Methods Appl. Sci., 3 (1981), 218-228.doi: 10.1002/mma.1670030116. |
[21] |
R. Picard, On the boundary value problems of electro- and magnetostatics, Proc. Roy. Soc. Edinburgh Sect. A, 92 (1982), 165-174.doi: 10.1017/S0308210500020023. |
[22] |
R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z., 187 (1984), 151-164.doi: 10.1007/BF01161700. |
[23] |
R. Picard, Some decomposition theorems and their applications to non-linear potential theory and Hodge theory, Math. Methods Appl. Sci., 12 (1990), 35-53.doi: 10.1002/mma.1670120103. |
[24] |
R. Picard, N. Weck and K.-J. Witsch, Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles, Analysis (Munich), 21 (2001), 231-263.doi: 10.1524/anly.2001.21.3.231. |
[25] |
J. Saranen, On an inequality of Friedrichs, Math. Scand., 51 (1982), 310-322. |
[26] |
C. Weber, A local compactness theorem for Maxwell's equations, Math. Methods Appl. Sci., 2 (1980), 12-25.doi: 10.1002/mma.1670020103. |
[27] |
N. Weck, Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries, J. Math. Anal. Appl., 46 (1974), 410-437.doi: 10.1016/0022-247X(74)90250-9. |
[28] |
K.-J. Witsch, A remark on a compactness result in electromagnetic theory, Math. Methods Appl. Sci., 16 (1993), 123-129.doi: 10.1002/mma.1670160205. |