June  2015, 8(3): 607-618. doi: 10.3934/dcdss.2015.8.607

On Maxwell's and Poincaré's constants

1. 

Fakultät für Mathematik, Universität Duisburg-Essen, Campus Essen, Thea-Leymann-Str. 9, 45141 Essen, Germany

Received  November 2013 Revised  May 2014 Published  October 2014

We prove that for bounded and convex domains in three dimensions, the Maxwell constants are bounded from below and above by Friedrichs' and Poincaré's constants. In other words, the second Maxwell eigenvalues lie between the square roots of the second Neumann-Laplace and the first Dirichlet-Laplace eigenvalue.
Citation: Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607
References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Methods Appl. Sci., 21 (1998), 823. doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B. Google Scholar

[2]

C. Amrouche, P. Ciarlet and P. J. Ciarlet, Weak vector and scalar potentials. Applications to Poincaré's theorem and Korn's inequality in Sobolev spaces with negative exponents,, Anal. Appl. (Singap.), 8 (2010), 1. doi: 10.1142/S0219530510001497. Google Scholar

[3]

M. Bebendorf, A note on the Poincaré inequality for convex domains,, Z. Anal. Anwendungen, 22 (2003), 751. doi: 10.4171/ZAA/1170. Google Scholar

[4]

M. Costabel, A coercive bilinear form for Maxwell's equations,, J. Math. Anal. Appl., 157 (1991), 527. doi: 10.1016/0022-247X(91)90104-8. Google Scholar

[5]

N. Filonov, On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator,, St. Petersburg Math. J., 16 (2005), 413. doi: 10.1090/S1061-0022-05-00857-5. Google Scholar

[6]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms,, Springer (Series in Computational Mathematics), (1986). doi: 10.1007/978-3-642-61623-5. Google Scholar

[7]

V. Gol'dshtein, I. Mitrea and M. Mitrea, Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds,, J. Math. Sci. (N.Y.), 172 (2011), 347. doi: 10.1007/s10958-010-0200-y. Google Scholar

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman (Advanced Publishing Program), (1985). Google Scholar

[9]

T. Jakab, I. Mitrea and M. Mitrea, On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains,, Indiana Univ. Math. J., 58 (2009), 2043. doi: 10.1512/iumj.2009.58.3678. Google Scholar

[10]

F. Jochmann, A compactness result for vector fields with divergence and curl in $L^q(\Omega)$ involving mixed boundary conditions,, Appl. Anal., 66 (1997), 189. doi: 10.1080/00036819708840581. Google Scholar

[11]

P. Kuhn and D. Pauly, Regularity results for generalized electro-magnetic problems,, Analysis (Munich), 30 (2010), 225. doi: 10.1524/anly.2010.1024. Google Scholar

[12]

R. Leis, Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien,, Math. Z., 106 (1968), 213. doi: 10.1007/BF01110135. Google Scholar

[13]

R. Leis, Initial Boundary Value Problems in Mathematical Physics,, Teubner, (1986). doi: 10.1007/978-3-663-10649-4. Google Scholar

[14]

D. Pauly, Low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains,, Adv. Math. Sci. Appl., 16 (2006), 591. Google Scholar

[15]

D. Pauly, Generalized electro-magneto statics in nonsmooth exterior domains,, Analysis (Munich), 27 (2007), 425. doi: 10.1524/anly.2007.27.4.425. Google Scholar

[16]

D. Pauly, Complete low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains,, Asymptot. Anal., 60 (2008), 125. Google Scholar

[17]

D. Pauly, Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media,, Math. Methods Appl. Sci., 31 (2008), 1509. doi: 10.1002/mma.982. Google Scholar

[18]

D. Pauly, On constants in Maxwell inequalities for bounded and convex domains,, Zapiski POMI, 435 (2014), 46. Google Scholar

[19]

L. Payne and H. Weinberger, An optimal Poincaré inequality for convex domains,, Arch. Rational Mech. Anal., 5 (1960), 286. doi: 10.1007/BF00252910. Google Scholar

[20]

R. Picard, Randwertaufgaben der verallgemeinerten Potentialtheorie,, Math. Methods Appl. Sci., 3 (1981), 218. doi: 10.1002/mma.1670030116. Google Scholar

[21]

R. Picard, On the boundary value problems of electro- and magnetostatics,, Proc. Roy. Soc. Edinburgh Sect. A, 92 (1982), 165. doi: 10.1017/S0308210500020023. Google Scholar

[22]

R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory,, Math. Z., 187 (1984), 151. doi: 10.1007/BF01161700. Google Scholar

[23]

R. Picard, Some decomposition theorems and their applications to non-linear potential theory and Hodge theory,, Math. Methods Appl. Sci., 12 (1990), 35. doi: 10.1002/mma.1670120103. Google Scholar

[24]

R. Picard, N. Weck and K.-J. Witsch, Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles,, Analysis (Munich), 21 (2001), 231. doi: 10.1524/anly.2001.21.3.231. Google Scholar

[25]

J. Saranen, On an inequality of Friedrichs,, Math. Scand., 51 (1982), 310. Google Scholar

[26]

C. Weber, A local compactness theorem for Maxwell's equations,, Math. Methods Appl. Sci., 2 (1980), 12. doi: 10.1002/mma.1670020103. Google Scholar

[27]

N. Weck, Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries,, J. Math. Anal. Appl., 46 (1974), 410. doi: 10.1016/0022-247X(74)90250-9. Google Scholar

[28]

K.-J. Witsch, A remark on a compactness result in electromagnetic theory,, Math. Methods Appl. Sci., 16 (1993), 123. doi: 10.1002/mma.1670160205. Google Scholar

show all references

References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Methods Appl. Sci., 21 (1998), 823. doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B. Google Scholar

[2]

C. Amrouche, P. Ciarlet and P. J. Ciarlet, Weak vector and scalar potentials. Applications to Poincaré's theorem and Korn's inequality in Sobolev spaces with negative exponents,, Anal. Appl. (Singap.), 8 (2010), 1. doi: 10.1142/S0219530510001497. Google Scholar

[3]

M. Bebendorf, A note on the Poincaré inequality for convex domains,, Z. Anal. Anwendungen, 22 (2003), 751. doi: 10.4171/ZAA/1170. Google Scholar

[4]

M. Costabel, A coercive bilinear form for Maxwell's equations,, J. Math. Anal. Appl., 157 (1991), 527. doi: 10.1016/0022-247X(91)90104-8. Google Scholar

[5]

N. Filonov, On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator,, St. Petersburg Math. J., 16 (2005), 413. doi: 10.1090/S1061-0022-05-00857-5. Google Scholar

[6]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms,, Springer (Series in Computational Mathematics), (1986). doi: 10.1007/978-3-642-61623-5. Google Scholar

[7]

V. Gol'dshtein, I. Mitrea and M. Mitrea, Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds,, J. Math. Sci. (N.Y.), 172 (2011), 347. doi: 10.1007/s10958-010-0200-y. Google Scholar

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman (Advanced Publishing Program), (1985). Google Scholar

[9]

T. Jakab, I. Mitrea and M. Mitrea, On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains,, Indiana Univ. Math. J., 58 (2009), 2043. doi: 10.1512/iumj.2009.58.3678. Google Scholar

[10]

F. Jochmann, A compactness result for vector fields with divergence and curl in $L^q(\Omega)$ involving mixed boundary conditions,, Appl. Anal., 66 (1997), 189. doi: 10.1080/00036819708840581. Google Scholar

[11]

P. Kuhn and D. Pauly, Regularity results for generalized electro-magnetic problems,, Analysis (Munich), 30 (2010), 225. doi: 10.1524/anly.2010.1024. Google Scholar

[12]

R. Leis, Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien,, Math. Z., 106 (1968), 213. doi: 10.1007/BF01110135. Google Scholar

[13]

R. Leis, Initial Boundary Value Problems in Mathematical Physics,, Teubner, (1986). doi: 10.1007/978-3-663-10649-4. Google Scholar

[14]

D. Pauly, Low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains,, Adv. Math. Sci. Appl., 16 (2006), 591. Google Scholar

[15]

D. Pauly, Generalized electro-magneto statics in nonsmooth exterior domains,, Analysis (Munich), 27 (2007), 425. doi: 10.1524/anly.2007.27.4.425. Google Scholar

[16]

D. Pauly, Complete low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains,, Asymptot. Anal., 60 (2008), 125. Google Scholar

[17]

D. Pauly, Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media,, Math. Methods Appl. Sci., 31 (2008), 1509. doi: 10.1002/mma.982. Google Scholar

[18]

D. Pauly, On constants in Maxwell inequalities for bounded and convex domains,, Zapiski POMI, 435 (2014), 46. Google Scholar

[19]

L. Payne and H. Weinberger, An optimal Poincaré inequality for convex domains,, Arch. Rational Mech. Anal., 5 (1960), 286. doi: 10.1007/BF00252910. Google Scholar

[20]

R. Picard, Randwertaufgaben der verallgemeinerten Potentialtheorie,, Math. Methods Appl. Sci., 3 (1981), 218. doi: 10.1002/mma.1670030116. Google Scholar

[21]

R. Picard, On the boundary value problems of electro- and magnetostatics,, Proc. Roy. Soc. Edinburgh Sect. A, 92 (1982), 165. doi: 10.1017/S0308210500020023. Google Scholar

[22]

R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory,, Math. Z., 187 (1984), 151. doi: 10.1007/BF01161700. Google Scholar

[23]

R. Picard, Some decomposition theorems and their applications to non-linear potential theory and Hodge theory,, Math. Methods Appl. Sci., 12 (1990), 35. doi: 10.1002/mma.1670120103. Google Scholar

[24]

R. Picard, N. Weck and K.-J. Witsch, Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles,, Analysis (Munich), 21 (2001), 231. doi: 10.1524/anly.2001.21.3.231. Google Scholar

[25]

J. Saranen, On an inequality of Friedrichs,, Math. Scand., 51 (1982), 310. Google Scholar

[26]

C. Weber, A local compactness theorem for Maxwell's equations,, Math. Methods Appl. Sci., 2 (1980), 12. doi: 10.1002/mma.1670020103. Google Scholar

[27]

N. Weck, Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries,, J. Math. Anal. Appl., 46 (1974), 410. doi: 10.1016/0022-247X(74)90250-9. Google Scholar

[28]

K.-J. Witsch, A remark on a compactness result in electromagnetic theory,, Math. Methods Appl. Sci., 16 (1993), 123. doi: 10.1002/mma.1670160205. Google Scholar

[1]

Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655

[2]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[3]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[4]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[5]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[6]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[7]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[8]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[9]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[10]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[11]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[12]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019181

[13]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[14]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[15]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[16]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[17]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[18]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

[19]

S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590

[20]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]