\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rate-independent memory in magneto-elastic materials

Abstract / Introduction Related Papers Cited by
  • These notes origin from a group of lectures given at the Spring School on ``Rate-independent evolutions and hysteresis modelling'' (Hystry 2013), held at Politecnico di Milano and at Università degli Studi di Milano, from May 27 until May 31, 2013. They are addressed to Graduate students in mathematics and applied science, interested in modeling rate-independent effects in smart systems. Therefore, they aim to provide the basic issues concerning modeling of multi-functional materials showing memory phenomena, with emphasis to magnetostrictives, in view of their application to the design of smart devices. Such tutorial summarizes several years activity on these issues that involved the cooperation with several colleagues, among all Dr. P. Krejčí, with whom the authors are indebted.
    Mathematics Subject Classification: Primary: 97M10, 93C95; Secondary: 94-01.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Atulasimha and A. B. Flatau, A review of magnetostrictive iron-gallium alloys, Smart Materials and Structures, 20 (2011), 043001.doi: 10.1088/0964-1726/20/4/043001.

    [2]

    G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998.

    [3]

    G. Bertotti and I. D. Mayergoyz, eds., The Science of Hysteresis, Elsevier, 2006.

    [4]

    M. Brokate, Some mathematical properties of the preisach model of hysteresis, IEEE Transactions on Magnetics, 25 (1989), 2922-2924.doi: 10.1109/20.34325.

    [5]

    M. Brokate and J. Sprekels, Hysteresis and PhaseTransitions, Appl. Math. Sci., 121, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4612-4048-8.

    [6]

    J. Curie and P. Curie, Développement, par pression de l'ectricité polaire dans les cristaux hémièdres à faces inclinées, Comptes rend., 91 (1880), 294-295.

    [7]

    J. Curie and P. Curie, Contractions et dilatations produites par des tensions dans les cristaux hémièdres faces faces inclinées, Comptes rend., 93 (1881), 1137-1140.

    [8]

    D. Davino, C. Natale, S. Pirozzi and C. Visone, A fast compensation algorithm for real-time control of magnetostrictive actuators, J. of Magnetism and Mag. Mat.(JMMM), 290-291 (2005), 1351-1354.doi: 10.1016/j.jmmm.2004.11.435.

    [9]

    D. Davino, A. Giustiniani and C. Visone, A two-port nonlinear model for magnetoelastic energy-harvesting devices, IEEE Transactions on Industrial Electronics, 58 (2001), 2556-2564.doi: 10.1109/TIE.2010.2062477.

    [10]

    D. Davino, A. Giustiniani and C. Visone, Modeling, compensation and control of smart devices with hysteresis, in Smart Actuation and Sensing Systems - Recent Advances and Future Challenges (ed. Giovanni Berselli), Chapter 6, InTech, 2012.doi: 10.5772/51388.

    [11]

    G. Engdahl (editor), Handbook of Giant Magnetostrictive Materials, Academic Press, 2000.

    [12]

    P. Ge and M. Jouaneh, Tracking control of a piezoceramic actuator, IEEE Transactions on Control Syst. Tech., 4(1996), 209-216.

    [13]

    J. P. Joule, On the effects of magnetism upon the dimensions of iron and steel bars, Philosophical Magazine Series 3, 30 (1847), 76-87.doi: 10.1080/14786444708645656.

    [14]

    M. A. Krasnosel'skii and A. V. Pokrovskii, Systems with Hysteresis, Translated from the Russian by Marek Niezgódka, Springer-Verlag, Berlin, 1989.doi: 10.1007/978-3-642-61302-9.

    [15]

    P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto Int. Ser. Math. Sci. Appl., Vol. 8, Gakkōtosho, Tokyo, 1996.

    [16]

    P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Zeit., 193 (1986), 247-264.doi: 10.1007/BF01174335.

    [17]

    P. Krejčí, On Maxwell equations with the Preisach hysteresis operator: The one-dimensional time-periodic case, Apl. Mat., 34 (1989), 364-374.

    [18]

    E. Madelung, Über Magnetisierung durch schnell ver- laufende Ströme und die Wirkungs- weise des Rutherford-Marconischen Magnetdetektors, Ann. Phys., 17 (1905), 861-890.

    [19]

    I. D. Mayergoyz, Mathematical Models of Hysteresis, Springer, 1991.doi: 10.2172/6911694.

    [20]

    P. Nordblad, Magnetocaloric materials: Strained relations, Nature Materials, 12 (2013), 11-12.doi: 10.1038/nmat3516.

    [21]

    F. Preisach, Über die magnetische Nachwirkung, Zeit. für Physik., 94 (1935), 277-302.

    [22]

    J. B. Restorff, M. Wun-Fogle, A. E. Clark and K. B. Hathaway, Induced magnetic anisotropy in stress-annealed galfenol alloys, IEEE Transactions on Magnetics, 42 (2006), 3087-3089.doi: 10.1109/TMAG.2006.878395.

    [23]

    J. Schäfer and H. Janocha, Compensation of hysteresis in solid-state actuators, Sensors and Actuators A, 49 (1995), 97-102.

    [24]

    A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences, 111, Springer-Verlag, Berlin, 1994.doi: 10.1007/978-3-662-11557-2.

    [25]

    P. Weiss and J. de Freundereich, Etude de l'aimantation initiale en function de la température, Arch. Sci. Phys. Nat., 42 (1916), 449.

    [26]

    S. Wu and C. Wayman, Martensitic transformations and the shape memory effect in $Ti_{50}$$Ni_{10}$$Au_{40}$ and $Ti_{50}$$Au_{50}$ alloys, Metallography, 20 (1987), 359-376.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return