August  2015, 8(4): 693-722. doi: 10.3934/dcdss.2015.8.693

Phase-field models for transition phenomena in materials with hysteresis

1. 

DICATAM, Università di Brescia, Via Valotti 9, 25133 Brescia

Received  March 2014 Revised  July 2014 Published  October 2014

Non-isothermal phase-field models of transition phenomena in materials with hysteresis are considered within the framework of the Ginzburg-Landau theory. Our attempt is to capture the relation between phase-transition and hysteresis (either mechanical or magnetic). All models are required to be compatible with thermodynamics and to fit well the shape of the major hysteresis loop. Focusing on uniform cyclic processes, numerical simulations at different temperatures are performed.
Citation: Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693
References:
[1]

F. Auricchio, Considerations on the constitutive modeling of shape-memory alloys,, in Shape Memory Alloys: Advances in Modelling and Applications (eds. F. Auricchio, (2002), 125.   Google Scholar

[2]

A. Berti, C. Giorgi and E. Vuk, Free energies in one-dimensional models of magnetic transitions with hysteresis,, Nuovo Cimento Soc. Ital. Fis. B, 125 (2010), 371.   Google Scholar

[3]

A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 293.   Google Scholar

[4]

A. Berti, C. Giorgi and E. Vuk, Hysteresis and thermally-induced transitions in ferro-magnetic materials,, Appl. Math. Model., 132 (2014), 73.  doi: 10.1007/s10440-014-9906-z.  Google Scholar

[5]

V. Berti, M. Fabrizio and C. Giorgi, A three-dimensional phase transition model in ferromagnetism: Existence and uniqueness,, J. Math. Anal. Appl., 355 (2009), 661.  doi: 10.1016/j.jmaa.2009.01.065.  Google Scholar

[6]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model,, Physica D, 239 (2010), 95.  doi: 10.1016/j.physd.2009.10.005.  Google Scholar

[7]

V. Berti, M. Fabrizio and D. Grandi, Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3430573.  Google Scholar

[8]

G. Bertotti and I. D. Mayergoyz, The Science of Hysteresis: Mathematical Modeling and Applications,, Volume 1, (2006).   Google Scholar

[9]

L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variables,, Journal of Intelligent Material Systems and Structures, 4 (1993), 229.  doi: 10.1177/1045389X9300400213.  Google Scholar

[10]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[11]

W. F. Brown, Jr., Micromagnetics,, Krieger Pub Co, (1978).   Google Scholar

[12]

J. M. D. Coey, Magnetism and Magnetic Materials,, Cambridge University Press, (2009).   Google Scholar

[13]

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials,, $2^{nd}$ edition, (2008).  doi: 10.1002/9780470386323.  Google Scholar

[14]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica D, 214 (2006), 144.  doi: 10.1016/j.physd.2006.01.002.  Google Scholar

[15]

M. Fabrizio, C. Giorgi and A. Morro, Phase transition in ferromagnetism,, Internat. J. Engrg. Sci., 47 (2009), 821.  doi: 10.1016/j.ijengsci.2009.05.010.  Google Scholar

[16]

M. Fabrizio, G. Matarazzo and M. Pecoraro, Hysteresis loops for para-ferromagnetic phase transitions,, Z. Angew. Math. Phys., 62 (2011), 1013.  doi: 10.1007/s00033-011-0160-1.  Google Scholar

[17]

M. Fabrizio and A. Morro, Electromagnetism of Continuous Media,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198527008.001.0001.  Google Scholar

[18]

M. Frémond, Matériaux à mémoire de forme,, C.R. Acad. Sci. Paris Ser. II, 304 (1987), 239.   Google Scholar

[19]

M. Frémond, Non-smooth Thermomechanics,, Springer-Verlag, (2002).  doi: 10.1007/978-3-662-04800-9.  Google Scholar

[20]

C. Giorgi, Continuum thermodynamics and phase-field models,, Milan J. Math., 77 (2009), 67.  doi: 10.1007/s00032-009-0101-z.  Google Scholar

[21]

N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group,, Addison-Wesley, (1992).   Google Scholar

[22]

D. Grandi, M. Maraldi and L. Molari, A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response,, Internat. J. Engrg. Sci., 50 (2012), 31.   Google Scholar

[23]

L. D. Landau and V. L. Ginzburg, On the theory of superconductivity,, in Collected papers of L. D. Landau (ed. D. ter Haar), (1965).   Google Scholar

[24]

L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics,, Pergamon, (1980).   Google Scholar

[25]

L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media,, $2^{nd}$ edition, (1984).   Google Scholar

[26]

V. I. Levitas and D. L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite$\leftrightarrow$martensite,, Physical Review B, 66 (2002), 134.   Google Scholar

[27]

S. Miyazaki, Development and characterization of shape memory alloys,, in Shape Memory Alloys, (1996), 69.  doi: 10.1007/978-3-7091-4348-3_2.  Google Scholar

[28]

A. H. Morrish, The Physical Principles of Magnetism,, Wiley-IEEE Press, (2001).  doi: 10.1109/9780470546581.  Google Scholar

[29]

A. Visintin, Differential Models of Hysteresis,, Series: Applied Mathematical Sciences, (1994).  doi: 10.1007/978-3-662-11557-2.  Google Scholar

[30]

C. M. Wayman, Shape memory and related phenomena,, Progress in Materials Science, 36 (1992), 203.  doi: 10.1016/0079-6425(92)90009-V.  Google Scholar

[31]

J. C. Willems, Dissipative dynamical systems - Part I: General theory,, Arch. Rational Mech. Anal., 45 (1972), 321.  doi: 10.1007/BF00276493.  Google Scholar

show all references

References:
[1]

F. Auricchio, Considerations on the constitutive modeling of shape-memory alloys,, in Shape Memory Alloys: Advances in Modelling and Applications (eds. F. Auricchio, (2002), 125.   Google Scholar

[2]

A. Berti, C. Giorgi and E. Vuk, Free energies in one-dimensional models of magnetic transitions with hysteresis,, Nuovo Cimento Soc. Ital. Fis. B, 125 (2010), 371.   Google Scholar

[3]

A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 293.   Google Scholar

[4]

A. Berti, C. Giorgi and E. Vuk, Hysteresis and thermally-induced transitions in ferro-magnetic materials,, Appl. Math. Model., 132 (2014), 73.  doi: 10.1007/s10440-014-9906-z.  Google Scholar

[5]

V. Berti, M. Fabrizio and C. Giorgi, A three-dimensional phase transition model in ferromagnetism: Existence and uniqueness,, J. Math. Anal. Appl., 355 (2009), 661.  doi: 10.1016/j.jmaa.2009.01.065.  Google Scholar

[6]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model,, Physica D, 239 (2010), 95.  doi: 10.1016/j.physd.2009.10.005.  Google Scholar

[7]

V. Berti, M. Fabrizio and D. Grandi, Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3430573.  Google Scholar

[8]

G. Bertotti and I. D. Mayergoyz, The Science of Hysteresis: Mathematical Modeling and Applications,, Volume 1, (2006).   Google Scholar

[9]

L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variables,, Journal of Intelligent Material Systems and Structures, 4 (1993), 229.  doi: 10.1177/1045389X9300400213.  Google Scholar

[10]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[11]

W. F. Brown, Jr., Micromagnetics,, Krieger Pub Co, (1978).   Google Scholar

[12]

J. M. D. Coey, Magnetism and Magnetic Materials,, Cambridge University Press, (2009).   Google Scholar

[13]

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials,, $2^{nd}$ edition, (2008).  doi: 10.1002/9780470386323.  Google Scholar

[14]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica D, 214 (2006), 144.  doi: 10.1016/j.physd.2006.01.002.  Google Scholar

[15]

M. Fabrizio, C. Giorgi and A. Morro, Phase transition in ferromagnetism,, Internat. J. Engrg. Sci., 47 (2009), 821.  doi: 10.1016/j.ijengsci.2009.05.010.  Google Scholar

[16]

M. Fabrizio, G. Matarazzo and M. Pecoraro, Hysteresis loops for para-ferromagnetic phase transitions,, Z. Angew. Math. Phys., 62 (2011), 1013.  doi: 10.1007/s00033-011-0160-1.  Google Scholar

[17]

M. Fabrizio and A. Morro, Electromagnetism of Continuous Media,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198527008.001.0001.  Google Scholar

[18]

M. Frémond, Matériaux à mémoire de forme,, C.R. Acad. Sci. Paris Ser. II, 304 (1987), 239.   Google Scholar

[19]

M. Frémond, Non-smooth Thermomechanics,, Springer-Verlag, (2002).  doi: 10.1007/978-3-662-04800-9.  Google Scholar

[20]

C. Giorgi, Continuum thermodynamics and phase-field models,, Milan J. Math., 77 (2009), 67.  doi: 10.1007/s00032-009-0101-z.  Google Scholar

[21]

N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group,, Addison-Wesley, (1992).   Google Scholar

[22]

D. Grandi, M. Maraldi and L. Molari, A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response,, Internat. J. Engrg. Sci., 50 (2012), 31.   Google Scholar

[23]

L. D. Landau and V. L. Ginzburg, On the theory of superconductivity,, in Collected papers of L. D. Landau (ed. D. ter Haar), (1965).   Google Scholar

[24]

L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics,, Pergamon, (1980).   Google Scholar

[25]

L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media,, $2^{nd}$ edition, (1984).   Google Scholar

[26]

V. I. Levitas and D. L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite$\leftrightarrow$martensite,, Physical Review B, 66 (2002), 134.   Google Scholar

[27]

S. Miyazaki, Development and characterization of shape memory alloys,, in Shape Memory Alloys, (1996), 69.  doi: 10.1007/978-3-7091-4348-3_2.  Google Scholar

[28]

A. H. Morrish, The Physical Principles of Magnetism,, Wiley-IEEE Press, (2001).  doi: 10.1109/9780470546581.  Google Scholar

[29]

A. Visintin, Differential Models of Hysteresis,, Series: Applied Mathematical Sciences, (1994).  doi: 10.1007/978-3-662-11557-2.  Google Scholar

[30]

C. M. Wayman, Shape memory and related phenomena,, Progress in Materials Science, 36 (1992), 203.  doi: 10.1016/0079-6425(92)90009-V.  Google Scholar

[31]

J. C. Willems, Dissipative dynamical systems - Part I: General theory,, Arch. Rational Mech. Anal., 45 (1972), 321.  doi: 10.1007/BF00276493.  Google Scholar

[1]

Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729

[2]

Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks & Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179

[3]

Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149

[4]

Hassen Aydi, Ayman Kachmar. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 977-998. doi: 10.3934/cpaa.2009.8.977

[5]

Augusto Visintin. Ohm-Hall conduction in hysteresis-free ferromagnetic processes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 551-563. doi: 10.3934/dcdsb.2013.18.551

[6]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[7]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[8]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[9]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[10]

Alain Miranville. Some mathematical models in phase transition. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271

[11]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[12]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks & Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[13]

Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955

[14]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[15]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[16]

I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173

[17]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[18]

Maya Briani, Benedetto Piccoli. Fluvial to torrential phase transition in open canals. Networks & Heterogeneous Media, 2018, 13 (4) : 663-690. doi: 10.3934/nhm.2018030

[19]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[20]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]