August  2015, 8(4): 749-756. doi: 10.3934/dcdss.2015.8.749

Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term

1. 

Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna

Received  January 2014 Revised  August 2014 Published  October 2014

We discuss two inverse problems of reconstruction of data in a mixed parabolic integrodifferential problem. First, we shall consider the reconstruction on a factor depending on time in the source term. Next, we shall consider the reconstruction of a convolution kernel.
Citation: Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749
References:
[1]

C. Cavaterra and F. Colombo, Identifying a heat source in automatic control problems,, Comm. Appl. Nonlinear Anal., 11 (2014), 1. Google Scholar

[2]

C. Cavaterra and D. Guidetti, Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term,, Ann. Mat. Pura Appl., 193 (2014), 779. doi: 10.1007/s10231-012-0301-y. Google Scholar

[3]

C. Cavaterra and D. Guidetti, Identification of a source factor in a control problem for the heat equation with a boundary memory term,, submitted., (). Google Scholar

[4]

P. Colli, M. Grasselli and J. Sprekels, Automatic control via thermostats of a hyperbolic Stefan problem with memory,, Appl. Math. Optim., 39 (1999), 229. doi: 10.1007/s002459900105. Google Scholar

[5]

L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine,, Rend. Sem. Mat. Univ. Padova, 34 (1964), 205. Google Scholar

[6]

D. Guidetti, Some remarks on operators preserving oscillations,, to appear in Rend. Sem. Mat.Univ. Pol. Torino., (). Google Scholar

[7]

M. Krasnosel'skii and A. Pokrovskii, Systems with Hysteresis,, Springer-Verlag, (1989). doi: 10.1007/978-3-642-61302-9. Google Scholar

[8]

O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Transl. Math. Monographs, (1968). Google Scholar

[9]

J. L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes et Applications, Vol. II,, Springer-Verlag, (1972). Google Scholar

[10]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Monographs and Textbooks in Pure and Applied Mathematics, (2000). Google Scholar

[11]

H. Triebel, Theory of Function Spaces,, Birkhäuser, (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[12]

A. Visintin, Differential Models in Hysteresis,, Applied Mathematical Sciences, (1994). doi: 10.1007/978-3-662-11557-2. Google Scholar

show all references

References:
[1]

C. Cavaterra and F. Colombo, Identifying a heat source in automatic control problems,, Comm. Appl. Nonlinear Anal., 11 (2014), 1. Google Scholar

[2]

C. Cavaterra and D. Guidetti, Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term,, Ann. Mat. Pura Appl., 193 (2014), 779. doi: 10.1007/s10231-012-0301-y. Google Scholar

[3]

C. Cavaterra and D. Guidetti, Identification of a source factor in a control problem for the heat equation with a boundary memory term,, submitted., (). Google Scholar

[4]

P. Colli, M. Grasselli and J. Sprekels, Automatic control via thermostats of a hyperbolic Stefan problem with memory,, Appl. Math. Optim., 39 (1999), 229. doi: 10.1007/s002459900105. Google Scholar

[5]

L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine,, Rend. Sem. Mat. Univ. Padova, 34 (1964), 205. Google Scholar

[6]

D. Guidetti, Some remarks on operators preserving oscillations,, to appear in Rend. Sem. Mat.Univ. Pol. Torino., (). Google Scholar

[7]

M. Krasnosel'skii and A. Pokrovskii, Systems with Hysteresis,, Springer-Verlag, (1989). doi: 10.1007/978-3-642-61302-9. Google Scholar

[8]

O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Transl. Math. Monographs, (1968). Google Scholar

[9]

J. L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes et Applications, Vol. II,, Springer-Verlag, (1972). Google Scholar

[10]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Monographs and Textbooks in Pure and Applied Mathematics, (2000). Google Scholar

[11]

H. Triebel, Theory of Function Spaces,, Birkhäuser, (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[12]

A. Visintin, Differential Models in Hysteresis,, Applied Mathematical Sciences, (1994). doi: 10.1007/978-3-662-11557-2. Google Scholar

[1]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[2]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[3]

Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711

[4]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[5]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[6]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[7]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[8]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[9]

Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems & Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599

[10]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[11]

K. Q. Lan. Properties of kernels and eigenvalues for three point boundary value problems. Conference Publications, 2005, 2005 (Special) : 546-555. doi: 10.3934/proc.2005.2005.546

[12]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[13]

Abdelkader Boucherif. Nonlocal problems for parabolic inclusions. Conference Publications, 2009, 2009 (Special) : 82-91. doi: 10.3934/proc.2009.2009.82

[14]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[15]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[16]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[17]

Paola Loreti, Daniela Sforza. Inverse observability inequalities for integrodifferential equations in square domains. Evolution Equations & Control Theory, 2018, 7 (1) : 61-77. doi: 10.3934/eect.2018004

[18]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[19]

Giuseppe Buttazzo, Lorenzo Freddi. Optimal control problems with weakly converging input operators. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 401-420. doi: 10.3934/dcds.1995.1.401

[20]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]