-
Previous Article
On a Poisson's equation arising from magnetism
- DCDS-S Home
- This Issue
-
Next Article
Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term
Thermodynamical consistency - a mystery or?
1. | Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01 Opava |
References:
[1] |
D. Davino, P. Krejčí and C. Visone, Fully couples modeling of magneto-mechanical hysteresis thorugh thermodynamic compatibility, Smart Materials and Structures, 22 (2013), 095009. |
[2] |
M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading, Physica B: Condensed Matter, 407 (2012), 1415-1416.
doi: 10.1016/j.physb.2011.10.017. |
[3] |
M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate, Discrete Cont. Dynam. Syst., Ser. S, 6 (2013), 909-923.
doi: 10.3934/dcdss.2013.6.909. |
[4] |
M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam, Comm. Pure Appl. Anal., 12 (2013), 2973-2996.
doi: 10.3934/cpaa.2013.12.2973. |
[5] |
M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate, Discrete Cont. Dynam. Syst., Ser. B, 19 (2014), 2091-2109.
doi: 10.3934/dcdsb.2014.19.2091. |
[6] |
P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Mathematical Sciences and Applications, 8, Gakkōtosho Co., Ltd., Tokyo, 1996. |
[7] |
J. Kopfová and P. Krejčí, A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials, Continuum Mechanics and Thermodynamics, 23 (2011), 125-137.
doi: 10.1007/s00161-010-0172-7. |
[8] |
J. Kopfová and P. Sander, Non-isothermal cycling fatigue in an oscillating elastoplastic beam with phase transition, Special HMM issue of Physica B: Condensed Matter, Physica B: Physics of Condensed Matter, (2014), 31-33. |
[9] |
A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences, 111, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-662-11557-2. |
show all references
References:
[1] |
D. Davino, P. Krejčí and C. Visone, Fully couples modeling of magneto-mechanical hysteresis thorugh thermodynamic compatibility, Smart Materials and Structures, 22 (2013), 095009. |
[2] |
M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading, Physica B: Condensed Matter, 407 (2012), 1415-1416.
doi: 10.1016/j.physb.2011.10.017. |
[3] |
M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate, Discrete Cont. Dynam. Syst., Ser. S, 6 (2013), 909-923.
doi: 10.3934/dcdss.2013.6.909. |
[4] |
M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam, Comm. Pure Appl. Anal., 12 (2013), 2973-2996.
doi: 10.3934/cpaa.2013.12.2973. |
[5] |
M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate, Discrete Cont. Dynam. Syst., Ser. B, 19 (2014), 2091-2109.
doi: 10.3934/dcdsb.2014.19.2091. |
[6] |
P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Mathematical Sciences and Applications, 8, Gakkōtosho Co., Ltd., Tokyo, 1996. |
[7] |
J. Kopfová and P. Krejčí, A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials, Continuum Mechanics and Thermodynamics, 23 (2011), 125-137.
doi: 10.1007/s00161-010-0172-7. |
[8] |
J. Kopfová and P. Sander, Non-isothermal cycling fatigue in an oscillating elastoplastic beam with phase transition, Special HMM issue of Physica B: Condensed Matter, Physica B: Physics of Condensed Matter, (2014), 31-33. |
[9] |
A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences, 111, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-662-11557-2. |
[1] |
Pavel Krejčí. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 101-119. doi: 10.3934/dcdss.2013.6.101 |
[2] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
[3] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[4] |
Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks and Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211 |
[5] |
Michela Eleuteri, Jana Kopfová, Pavel Krejčí. A new phase field model for material fatigue in an oscillating elastoplastic beam. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2465-2495. doi: 10.3934/dcds.2015.35.2465 |
[6] |
Hala Ghazi, François James, Hélène Mathis. A nonisothermal thermodynamical model of liquid-vapor interaction with metastability. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2371-2409. doi: 10.3934/dcdsb.2020183 |
[7] |
Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3925-3952. doi: 10.3934/dcdss.2020459 |
[8] |
Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163 |
[9] |
Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial and Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493 |
[10] |
Youssef Amal, Martin Campos Pinto. Global solutions for an age-dependent model of nucleation, growth and ageing with hysteresis. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 517-535. doi: 10.3934/dcdsb.2010.13.517 |
[11] |
Michela Eleuteri, Jana Kopfov, Pavel Krej?. Fatigue accumulation in an oscillating plate. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 909-923. doi: 10.3934/dcdss.2013.6.909 |
[12] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[13] |
Toufik Bakir, Bernard Bonnard, Jérémy Rouot. A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks and Heterogeneous Media, 2019, 14 (1) : 79-100. doi: 10.3934/nhm.2019005 |
[14] |
D. Lannes. Consistency of the KP approximation. Conference Publications, 2003, 2003 (Special) : 517-525. doi: 10.3934/proc.2003.2003.517 |
[15] |
Imre Csiszar and Paul C. Shields. Consistency of the BIC order estimator. Electronic Research Announcements, 1999, 5: 123-127. |
[16] |
Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997 |
[17] |
Ruikuan Liu, Tian Ma, Shouhong Wang, Jiayan Yang. Thermodynamical potentials of classical and quantum systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1411-1448. doi: 10.3934/dcdsb.2018214 |
[18] |
Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177 |
[19] |
Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481 |
[20] |
Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Fatigue accumulation in a thermo-visco-elastoplastic plate. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2091-2109. doi: 10.3934/dcdsb.2014.19.2091 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]