August  2015, 8(4): 757-767. doi: 10.3934/dcdss.2015.8.757

Thermodynamical consistency - a mystery or?

1. 

Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01 Opava

Received  January 2014 Revised  July 2014 Published  October 2014

The goal of this note is to discuss the basic thermodynamical principles and show how they need to be considered in the process of developing new mathematical models. We give numerous examples: linear elasticity with constant or non-constant temperature, we discuss classical hysteresis models as the play operator, the Preisach operator as well as new models introduced in the last years - the temperature dependent Preisach model, models of magnetostriction and models of an oscillating beam with fatigue.
Citation: Jana Kopfová. Thermodynamical consistency - a mystery or?. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 757-767. doi: 10.3934/dcdss.2015.8.757
References:
[1]

D. Davino, P. Krejčí and C. Visone, Fully couples modeling of magneto-mechanical hysteresis thorugh thermodynamic compatibility,, Smart Materials and Structures, 22 (2013).   Google Scholar

[2]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading,, Physica B: Condensed Matter, 407 (2012), 1415.  doi: 10.1016/j.physb.2011.10.017.  Google Scholar

[3]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate,, Discrete Cont. Dynam. Syst., 6 (2013), 909.  doi: 10.3934/dcdss.2013.6.909.  Google Scholar

[4]

M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam,, Comm. Pure Appl. Anal., 12 (2013), 2973.  doi: 10.3934/cpaa.2013.12.2973.  Google Scholar

[5]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate,, Discrete Cont. Dynam. Syst., 19 (2014), 2091.  doi: 10.3934/dcdsb.2014.19.2091.  Google Scholar

[6]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations,, Mathematical Sciences and Applications, (1996).   Google Scholar

[7]

J. Kopfová and P. Krejčí, A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials,, Continuum Mechanics and Thermodynamics, 23 (2011), 125.  doi: 10.1007/s00161-010-0172-7.  Google Scholar

[8]

J. Kopfová and P. Sander, Non-isothermal cycling fatigue in an oscillating elastoplastic beam with phase transition,, Special HMM issue of Physica B: Condensed Matter, (2014), 31.   Google Scholar

[9]

A. Visintin, Differential Models of Hysteresis,, Applied Mathematical Sciences, (1994).  doi: 10.1007/978-3-662-11557-2.  Google Scholar

show all references

References:
[1]

D. Davino, P. Krejčí and C. Visone, Fully couples modeling of magneto-mechanical hysteresis thorugh thermodynamic compatibility,, Smart Materials and Structures, 22 (2013).   Google Scholar

[2]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading,, Physica B: Condensed Matter, 407 (2012), 1415.  doi: 10.1016/j.physb.2011.10.017.  Google Scholar

[3]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate,, Discrete Cont. Dynam. Syst., 6 (2013), 909.  doi: 10.3934/dcdss.2013.6.909.  Google Scholar

[4]

M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam,, Comm. Pure Appl. Anal., 12 (2013), 2973.  doi: 10.3934/cpaa.2013.12.2973.  Google Scholar

[5]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate,, Discrete Cont. Dynam. Syst., 19 (2014), 2091.  doi: 10.3934/dcdsb.2014.19.2091.  Google Scholar

[6]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations,, Mathematical Sciences and Applications, (1996).   Google Scholar

[7]

J. Kopfová and P. Krejčí, A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials,, Continuum Mechanics and Thermodynamics, 23 (2011), 125.  doi: 10.1007/s00161-010-0172-7.  Google Scholar

[8]

J. Kopfová and P. Sander, Non-isothermal cycling fatigue in an oscillating elastoplastic beam with phase transition,, Special HMM issue of Physica B: Condensed Matter, (2014), 31.   Google Scholar

[9]

A. Visintin, Differential Models of Hysteresis,, Applied Mathematical Sciences, (1994).  doi: 10.1007/978-3-662-11557-2.  Google Scholar

[1]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[9]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[10]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]