-
Previous Article
Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems
- DCDS-S Home
- This Issue
-
Next Article
Homogenization of thermal-hydro-mass transfer processes
Multi-scales H-measures
1. | University Professor of Mathematics emeritus, Carnegie Mellon University, Pittsburgh, PA 15213-3890, United States |
References:
[1] |
Y. Amirat, K. Hamdache and A. Ziani, Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 397-417. |
[2] |
Y. Amirat, K. Hamdache and A. Ziani, Étude d'une équation de transport à mémoire, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 685-688. |
[3] |
P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations, 16 (1991), 1761-1794.
doi: 10.1080/03605309108820822. |
[4] |
P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire sur les Équations aux Dérivées Partielles, 1990-1991, Exposé XVI, École Polytechnique, Palaiseau, 19 pp. |
[5] |
P.-L. Lions and T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9 (1993), 553-618.
doi: 10.4171/RMI/143. |
[6] |
L. Tartar, Approximations of H-measures, Research Report 97-204, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890. |
[7] |
L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 193-230.
doi: 10.1017/S0308210500020606. |
[8] |
L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-05195-1. |
show all references
References:
[1] |
Y. Amirat, K. Hamdache and A. Ziani, Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 397-417. |
[2] |
Y. Amirat, K. Hamdache and A. Ziani, Étude d'une équation de transport à mémoire, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 685-688. |
[3] |
P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations, 16 (1991), 1761-1794.
doi: 10.1080/03605309108820822. |
[4] |
P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire sur les Équations aux Dérivées Partielles, 1990-1991, Exposé XVI, École Polytechnique, Palaiseau, 19 pp. |
[5] |
P.-L. Lions and T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9 (1993), 553-618.
doi: 10.4171/RMI/143. |
[6] |
L. Tartar, Approximations of H-measures, Research Report 97-204, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890. |
[7] |
L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 193-230.
doi: 10.1017/S0308210500020606. |
[8] |
L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-05195-1. |
[1] |
Thomas Blanc, Mihaï Bostan. Multi-scale analysis for highly anisotropic parabolic problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 335-399. doi: 10.3934/dcdsb.2019186 |
[2] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[3] |
Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200 |
[4] |
Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803 |
[5] |
Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013 |
[6] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227-254. doi: 10.3934/nhm.2022004 |
[7] |
Tudor Barbu. Deep learning-based multiple moving vehicle detection and tracking using a nonlinear fourth-order reaction-diffusion based multi-scale video object analysis. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022083 |
[8] |
Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic and Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893 |
[9] |
Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059 |
[10] |
Lihui Chai, Shi Jin, Qin Li. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic and Related Models, 2013, 6 (3) : 505-532. doi: 10.3934/krm.2013.6.505 |
[11] |
Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030 |
[12] |
Xiaoming An, Xian Yang. Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1649-1672. doi: 10.3934/cpaa.2022038 |
[13] |
Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42. |
[14] |
Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Multi-scale multi-profile global solutions of parabolic equations in $\mathbb{R}^N $. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 449-472. doi: 10.3934/dcdss.2012.5.449 |
[15] |
Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135 |
[16] |
Thomas Y. Hou, Pengfei Liu. Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4451-4476. doi: 10.3934/dcds.2016.36.4451 |
[17] |
Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69 |
[18] |
Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062 |
[19] |
Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234 |
[20] |
Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]