August  2015, 8(4): 793-816. doi: 10.3934/dcdss.2015.8.793

P.D.E.s with hysteresis 30 years later

1. 

Dipartimento di Matematica dell'Università degli Studi di Trento, via Sommarive 14, 38123 Povo di Trento, Italy

Received  September 2013 Revised  July 2014 Published  October 2014

Continuous and discontinuous hysteresis operators are first reviewed in general. The Duhem model, the generalized play, the (delayed) relay and the Preisach model are outlined, as well as vector extensions of the two latter models.
    Two examples of initial- and boundary-value problems for P.D.E.s with hysteresis are then illustrated. Well-posedness is proved for quasilinear parabolic problems with either continuous or discontinuous hysteresis. Existence of a weak solution is shown for second-order quasilinear hyperbolic problems with discontinuous hysteresis.
Citation: Augusto Visintin. P.D.E.s with hysteresis 30 years later. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 793-816. doi: 10.3934/dcdss.2015.8.793
References:
[1]

G. Bertotti, Hysteresis in Magnetism,, Academic Press, (1998). Google Scholar

[2]

G. Bertotti and I. Mayergoyz, eds., The Science of Hysteresis,, Elsevier, (2006). Google Scholar

[3]

R. Bouc, Solution périodique de l'équation de la ferrorésonance avec hystérésis,, C.R. Acad. Sci. Paris, 263 (1966). Google Scholar

[4]

R. Bouc, Modèle Mathématique D'hystérésis et Application Aux Systèmes à un Degré de Liberté,, Thèse, (1969). Google Scholar

[5]

M. Brokate, On a characterization of the Preisach model for hysteresis,, Rend. Sem. Mat. Padova, 83 (1990), 153. Google Scholar

[6]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[7]

M. Brokate and A. Visintin, Properties of the Preisach model for hysteresis,, J. Reine Angew. Math., 402 (1989), 1. doi: 10.1515/crll.1989.402.1. Google Scholar

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth or brittle fractures: Existence and approximation results,, Arch. Rat. Mech. Anal., 162 (2002), 101. doi: 10.1007/s002050100187. Google Scholar

[9]

A. Damlamian and A. Visintin, Une généralisation vectorielle du modèle de Preisach pour l'hystérésis,, C. R. Acad. Sci. Paris, 297 (1983), 437. Google Scholar

[10]

E. Della Torre, Magnetic Hysteresis,, Wiley and I.E.E.E. Press, (1999). Google Scholar

[11]

P. Duhem, The Evolution of Mechanics,, Sijthoff and Noordhoff, (1980). Google Scholar

[12]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem: Existence and approximation results,, J. Mech. Phys. Solids, 46 (1998), 1319. doi: 10.1016/S0022-5096(98)00034-9. Google Scholar

[13]

M. Hilpert, On uniqueness for evolution problems with hysteresis,, in Mathematical Models for Phase Change Problems (ed. J.-F. Rodrigues), (1989), 377. Google Scholar

[14]

D. Jiles, Introduction to Magnetism and Magnetic Materials,, Chapman and Hall, (1991). Google Scholar

[15]

M. A. Krasnosel'skiĭ, B. M. Darinskiĭ, I. V. Emelin, P. P. Zabreĭko, E. A. Lifsic and A. V. Pokrovskiĭ, Hysterant operator,, Soviet Math. Dokl., 11 (1970), 29. Google Scholar

[16]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis,, Springer, (1989). doi: 10.1007/978-3-642-61302-9. Google Scholar

[17]

P. Krejčí, Hysteresis and periodic solutions of semi-linear and quasi-linear wave equations,, Math. Z., 193 (1986), 247. doi: 10.1007/BF01174335. Google Scholar

[18]

P. Krejčí, Convexity, Hysteresis and Dissipation in Hyperbolic Equations,, Gakkōtosho, (1996). Google Scholar

[19]

I. D. Mayergoyz, Mathematical models of hysteresis,, Phys. Rev. Letters, 56 (1986), 1518. doi: 10.1103/PhysRevLett.56.1518. Google Scholar

[20]

I. D. Mayergoyz, Mathematical models of hysteresis,, I.E.E.E. Trans. Magn., 22 (1986), 603. Google Scholar

[21]

I. D. Mayergoyz, Mathematical Models of Hysteresis,, Springer, (1991). doi: 10.2172/6911694. Google Scholar

[22]

I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications,, Elsevier, (2003). Google Scholar

[23]

A. Mielke, Evolution of rate-independent systems,, in Evolutionary equations. Vol. II (eds. C. Dafermos and E. Feireisel), (2005), 461. Google Scholar

[24]

A. Mielke and T. Roubíček, Rate-Independent Systems - Theory and Application,, Springer, (2015). Google Scholar

[25]

A. Mielke, F. Theil and V. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Rational Mech. Anal., 162 (2002), 137. doi: 10.1007/s002050200194. Google Scholar

[26]

F. Preisach, Über die magnetische Nachwirkung,, Z. Physik, 94 (1935), 277. Google Scholar

[27]

A. Visintin, Hystérésis dans les systèmes distribués,, C.R. Acad. Sci. Paris, 293 (1981), 625. Google Scholar

[28]

A. Visintin, A model for hysteresis of distributed systems,, Ann. Mat. Pura Appl., 131 (1982), 203. doi: 10.1007/BF01765153. Google Scholar

[29]

A. Visintin, A phase transition problem with delay,, Control and Cybernetics, 11 (1982), 5. Google Scholar

[30]

A. Visintin, Continuity properties of a class of hysteresis functionals,, Atti Sem. Mat. Fis. Univ. Modena, 32 (1983), 232. Google Scholar

[31]

A. Visintin, Hysteresis and semigroups,, in Models of Hysteresis (ed. A. Visintin), (1993), 192. Google Scholar

[32]

A. Visintin, Differential Models of Hysteresis,, Springer, (1994). doi: 10.1007/978-3-662-11557-2. Google Scholar

[33]

A. Visintin, Quasi-linear hyperbolic equations with hysteresis,, Ann. Inst. H. Poincaré. Analyse Non Linéaire, 19 (2002), 451. doi: 10.1016/S0294-1449(01)00086-5. Google Scholar

[34]

A. Visintin, Maxwell's equations with vector hysteresis,, Arch. Rat. Mech. Anal., 175 (2005), 1. doi: 10.1007/s00205-004-0333-6. Google Scholar

[35]

A. Visintin, Mathematical models of hysteresis,, in Modelling and Optimization of Distributed Parameter Systems (Warsaw, (1995), 71. Google Scholar

[36]

A. Visintin, Rheological models vs. homogenization,, G.A.M.M.-Mitt., 34 (2011), 113. doi: 10.1002/gamm.201110018. Google Scholar

show all references

References:
[1]

G. Bertotti, Hysteresis in Magnetism,, Academic Press, (1998). Google Scholar

[2]

G. Bertotti and I. Mayergoyz, eds., The Science of Hysteresis,, Elsevier, (2006). Google Scholar

[3]

R. Bouc, Solution périodique de l'équation de la ferrorésonance avec hystérésis,, C.R. Acad. Sci. Paris, 263 (1966). Google Scholar

[4]

R. Bouc, Modèle Mathématique D'hystérésis et Application Aux Systèmes à un Degré de Liberté,, Thèse, (1969). Google Scholar

[5]

M. Brokate, On a characterization of the Preisach model for hysteresis,, Rend. Sem. Mat. Padova, 83 (1990), 153. Google Scholar

[6]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[7]

M. Brokate and A. Visintin, Properties of the Preisach model for hysteresis,, J. Reine Angew. Math., 402 (1989), 1. doi: 10.1515/crll.1989.402.1. Google Scholar

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth or brittle fractures: Existence and approximation results,, Arch. Rat. Mech. Anal., 162 (2002), 101. doi: 10.1007/s002050100187. Google Scholar

[9]

A. Damlamian and A. Visintin, Une généralisation vectorielle du modèle de Preisach pour l'hystérésis,, C. R. Acad. Sci. Paris, 297 (1983), 437. Google Scholar

[10]

E. Della Torre, Magnetic Hysteresis,, Wiley and I.E.E.E. Press, (1999). Google Scholar

[11]

P. Duhem, The Evolution of Mechanics,, Sijthoff and Noordhoff, (1980). Google Scholar

[12]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem: Existence and approximation results,, J. Mech. Phys. Solids, 46 (1998), 1319. doi: 10.1016/S0022-5096(98)00034-9. Google Scholar

[13]

M. Hilpert, On uniqueness for evolution problems with hysteresis,, in Mathematical Models for Phase Change Problems (ed. J.-F. Rodrigues), (1989), 377. Google Scholar

[14]

D. Jiles, Introduction to Magnetism and Magnetic Materials,, Chapman and Hall, (1991). Google Scholar

[15]

M. A. Krasnosel'skiĭ, B. M. Darinskiĭ, I. V. Emelin, P. P. Zabreĭko, E. A. Lifsic and A. V. Pokrovskiĭ, Hysterant operator,, Soviet Math. Dokl., 11 (1970), 29. Google Scholar

[16]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis,, Springer, (1989). doi: 10.1007/978-3-642-61302-9. Google Scholar

[17]

P. Krejčí, Hysteresis and periodic solutions of semi-linear and quasi-linear wave equations,, Math. Z., 193 (1986), 247. doi: 10.1007/BF01174335. Google Scholar

[18]

P. Krejčí, Convexity, Hysteresis and Dissipation in Hyperbolic Equations,, Gakkōtosho, (1996). Google Scholar

[19]

I. D. Mayergoyz, Mathematical models of hysteresis,, Phys. Rev. Letters, 56 (1986), 1518. doi: 10.1103/PhysRevLett.56.1518. Google Scholar

[20]

I. D. Mayergoyz, Mathematical models of hysteresis,, I.E.E.E. Trans. Magn., 22 (1986), 603. Google Scholar

[21]

I. D. Mayergoyz, Mathematical Models of Hysteresis,, Springer, (1991). doi: 10.2172/6911694. Google Scholar

[22]

I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications,, Elsevier, (2003). Google Scholar

[23]

A. Mielke, Evolution of rate-independent systems,, in Evolutionary equations. Vol. II (eds. C. Dafermos and E. Feireisel), (2005), 461. Google Scholar

[24]

A. Mielke and T. Roubíček, Rate-Independent Systems - Theory and Application,, Springer, (2015). Google Scholar

[25]

A. Mielke, F. Theil and V. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Rational Mech. Anal., 162 (2002), 137. doi: 10.1007/s002050200194. Google Scholar

[26]

F. Preisach, Über die magnetische Nachwirkung,, Z. Physik, 94 (1935), 277. Google Scholar

[27]

A. Visintin, Hystérésis dans les systèmes distribués,, C.R. Acad. Sci. Paris, 293 (1981), 625. Google Scholar

[28]

A. Visintin, A model for hysteresis of distributed systems,, Ann. Mat. Pura Appl., 131 (1982), 203. doi: 10.1007/BF01765153. Google Scholar

[29]

A. Visintin, A phase transition problem with delay,, Control and Cybernetics, 11 (1982), 5. Google Scholar

[30]

A. Visintin, Continuity properties of a class of hysteresis functionals,, Atti Sem. Mat. Fis. Univ. Modena, 32 (1983), 232. Google Scholar

[31]

A. Visintin, Hysteresis and semigroups,, in Models of Hysteresis (ed. A. Visintin), (1993), 192. Google Scholar

[32]

A. Visintin, Differential Models of Hysteresis,, Springer, (1994). doi: 10.1007/978-3-662-11557-2. Google Scholar

[33]

A. Visintin, Quasi-linear hyperbolic equations with hysteresis,, Ann. Inst. H. Poincaré. Analyse Non Linéaire, 19 (2002), 451. doi: 10.1016/S0294-1449(01)00086-5. Google Scholar

[34]

A. Visintin, Maxwell's equations with vector hysteresis,, Arch. Rat. Mech. Anal., 175 (2005), 1. doi: 10.1007/s00205-004-0333-6. Google Scholar

[35]

A. Visintin, Mathematical models of hysteresis,, in Modelling and Optimization of Distributed Parameter Systems (Warsaw, (1995), 71. Google Scholar

[36]

A. Visintin, Rheological models vs. homogenization,, G.A.M.M.-Mitt., 34 (2011), 113. doi: 10.1002/gamm.201110018. Google Scholar

[1]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[2]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[3]

Martin Brokate, Pavel Krejčí. Weak differentiability of scalar hysteresis operators. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2405-2421. doi: 10.3934/dcds.2015.35.2405

[4]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[5]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[6]

Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231

[7]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[8]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

[9]

Pavel Gurevich. Periodic solutions of parabolic problems with hysteresis on the boundary. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1041-1083. doi: 10.3934/dcds.2011.29.1041

[10]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[11]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[12]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[13]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[14]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[15]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[16]

Rod Cross, Hugh McNamara, Leonid Kalachev, Alexei Pokrovskii. Hysteresis and post Walrasian economics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 377-401. doi: 10.3934/dcdsb.2013.18.377

[17]

J. Samuel Jiang, Hans G. Kaper, Gary K Leaf. Hysteresis in layered spring magnets. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 219-232. doi: 10.3934/dcdsb.2001.1.219

[18]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[19]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[20]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]