-
Previous Article
Numerical simulation of flow in fluidized beds
- DCDS-S Home
- This Issue
-
Next Article
Preface: Special Issue on recent topics in industrial and applied mathematics
A local discontinuous Galerkin method based on variational structure
1. | Department of Mathematical Informatics, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan, Japan, Japan |
References:
[1] |
F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), 267-279.
doi: 10.1006/jcph.1996.5572. |
[2] |
J. L. Bona, H. Chen, O. Karakashian and Y. Xing, Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation, Math. Comput., 82 (2013), 1401-1432.
doi: 10.1090/S0025-5718-2013-02661-0. |
[3] |
G. F. Carey and Y. Shen, Approximations of the KdV equation by least squares finite elements, Comput. Methods Appl. Mech. Engrg., 93 (1991), 1-11.
doi: 10.1016/0045-7825(91)90112-J. |
[4] |
B. Cockburn, G. E. Karniadakis and C. W. Shu, Discontinuous Galerkin methods, Theory, Computation and Applications, volume 11 of Springer Lecture Notes in Computational Science and Engineering. Springer-Verlag, Heidelberg, 2000.
doi: 10.1007/978-3-642-59721-3. |
[5] |
B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for timedependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.
doi: 10.1137/S0036142997316712. |
[6] |
A. Debussche and J. Printems, Numerical simulation of the stochastic Korteweg-de Vries equation, Physica D, 134 (1999), 200-226.
doi: 10.1016/S0167-2789(99)00072-X. |
[7] |
D. Furihata, Finite difference schemes for $\frac{\partial u}{\partial t}=(\frac{\partial}{\partial x})^\alpha\frac{\delta G}{\delta u}$ that inherit energy conservation or dissipation property, J. Comput. Phys., 156 (1999), 181-205.
doi: 10.1006/jcph.1999.6377. |
[8] |
D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, 2011. |
[9] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2nd ed.), Springer-Verlag, Heidelberg, 2006. |
[10] |
O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467.
doi: 10.1007/BF02440162. |
[11] |
T. Matsuo, Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations, J. Comput. Appl. Math., 218 (2008), 506-521.
doi: 10.1016/j.cam.2007.08.001. |
[12] |
Y. Miyatake and T. Matsuo, A general framework for finding energy dissipative/conservative $H^1$-Galerkin schemes and their underlying $H^1$-weak forms for nonlinear evolution equations, BIT., 54 (2014), 1119-1154.
doi: 10.1007/s10543-014-0483-3. |
[13] |
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7pp.
doi: 10.1088/1751-8113/41/4/045206. |
[14] |
W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Technical report, Los Alamos Scientific Laboratory Report, 1973. |
[15] |
Y. Xia, Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for the Cahn-Hilliard type equations, J. Comput. Phys., 227 (2007), 472-491.
doi: 10.1016/j.jcp.2007.08.001. |
[16] |
Y. Xing, C. S. Chou and C. W. Shu, Energy conserving local discontinuous Galerkin methods for wave propagation problems, Inverse Problem and Imaging, 7 (2013), 967-986.
doi: 10.3934/ipi.2013.7.967. |
[17] |
Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205 (2005), 72-97.
doi: 10.1016/j.jcp.2004.11.001. |
[18] |
Y. Xu and C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), 1998-2021.
doi: 10.1137/070679764. |
[19] |
T. Yaguchi, T. Matsuo and M. Sugihara, An extension of the discrete variational method to nonuniform grids, J. Comput. Phys., 229 (2010), 4382-4423.
doi: 10.1016/j.jcp.2010.02.018. |
[20] |
J. Yan and C. W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40 (2002), 769-791.
doi: 10.1137/S0036142901390378. |
[21] |
N. Yi, Y. Huang and H. Liu, A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: Energy conservation and boundary effect, J. Comput. Phys., 242 (2013), 351-366.
doi: 10.1016/j.jcp.2013.01.031. |
show all references
References:
[1] |
F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), 267-279.
doi: 10.1006/jcph.1996.5572. |
[2] |
J. L. Bona, H. Chen, O. Karakashian and Y. Xing, Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation, Math. Comput., 82 (2013), 1401-1432.
doi: 10.1090/S0025-5718-2013-02661-0. |
[3] |
G. F. Carey and Y. Shen, Approximations of the KdV equation by least squares finite elements, Comput. Methods Appl. Mech. Engrg., 93 (1991), 1-11.
doi: 10.1016/0045-7825(91)90112-J. |
[4] |
B. Cockburn, G. E. Karniadakis and C. W. Shu, Discontinuous Galerkin methods, Theory, Computation and Applications, volume 11 of Springer Lecture Notes in Computational Science and Engineering. Springer-Verlag, Heidelberg, 2000.
doi: 10.1007/978-3-642-59721-3. |
[5] |
B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for timedependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.
doi: 10.1137/S0036142997316712. |
[6] |
A. Debussche and J. Printems, Numerical simulation of the stochastic Korteweg-de Vries equation, Physica D, 134 (1999), 200-226.
doi: 10.1016/S0167-2789(99)00072-X. |
[7] |
D. Furihata, Finite difference schemes for $\frac{\partial u}{\partial t}=(\frac{\partial}{\partial x})^\alpha\frac{\delta G}{\delta u}$ that inherit energy conservation or dissipation property, J. Comput. Phys., 156 (1999), 181-205.
doi: 10.1006/jcph.1999.6377. |
[8] |
D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, 2011. |
[9] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2nd ed.), Springer-Verlag, Heidelberg, 2006. |
[10] |
O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467.
doi: 10.1007/BF02440162. |
[11] |
T. Matsuo, Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations, J. Comput. Appl. Math., 218 (2008), 506-521.
doi: 10.1016/j.cam.2007.08.001. |
[12] |
Y. Miyatake and T. Matsuo, A general framework for finding energy dissipative/conservative $H^1$-Galerkin schemes and their underlying $H^1$-weak forms for nonlinear evolution equations, BIT., 54 (2014), 1119-1154.
doi: 10.1007/s10543-014-0483-3. |
[13] |
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7pp.
doi: 10.1088/1751-8113/41/4/045206. |
[14] |
W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Technical report, Los Alamos Scientific Laboratory Report, 1973. |
[15] |
Y. Xia, Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for the Cahn-Hilliard type equations, J. Comput. Phys., 227 (2007), 472-491.
doi: 10.1016/j.jcp.2007.08.001. |
[16] |
Y. Xing, C. S. Chou and C. W. Shu, Energy conserving local discontinuous Galerkin methods for wave propagation problems, Inverse Problem and Imaging, 7 (2013), 967-986.
doi: 10.3934/ipi.2013.7.967. |
[17] |
Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205 (2005), 72-97.
doi: 10.1016/j.jcp.2004.11.001. |
[18] |
Y. Xu and C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), 1998-2021.
doi: 10.1137/070679764. |
[19] |
T. Yaguchi, T. Matsuo and M. Sugihara, An extension of the discrete variational method to nonuniform grids, J. Comput. Phys., 229 (2010), 4382-4423.
doi: 10.1016/j.jcp.2010.02.018. |
[20] |
J. Yan and C. W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40 (2002), 769-791.
doi: 10.1137/S0036142901390378. |
[21] |
N. Yi, Y. Huang and H. Liu, A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: Energy conservation and boundary effect, J. Comput. Phys., 242 (2013), 351-366.
doi: 10.1016/j.jcp.2013.01.031. |
[1] |
Makoto Okumura, Daisuke Furihata. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4927-4960. doi: 10.3934/dcds.2020206 |
[2] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[3] |
Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146 |
[4] |
Lin Lu, Qi Wang, Yongzhong Song, Yushun Wang. Local structure-preserving algorithms for the molecular beam epitaxy model with slope selection. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4745-4765. doi: 10.3934/dcdsb.2020311 |
[5] |
Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition. Communications on Pure and Applied Analysis, 2022, 21 (2) : 355-392. doi: 10.3934/cpaa.2021181 |
[6] |
Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018 |
[7] |
Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093 |
[8] |
Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic and Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373 |
[9] |
Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic and Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021 |
[10] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[11] |
Hideo Kubo. Asymptotic behavior of solutions to semilinear wave equations with dissipative structure. Conference Publications, 2007, 2007 (Special) : 602-613. doi: 10.3934/proc.2007.2007.602 |
[12] |
Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216 |
[13] |
Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic and Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139 |
[14] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[15] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29 (3) : 2375-2389. doi: 10.3934/era.2020120 |
[16] |
Hassan Najafi Alishah, Pedro Duarte, Telmo Peixe. Conservative and dissipative polymatrix replicators. Journal of Dynamics and Games, 2015, 2 (2) : 157-185. doi: 10.3934/jdg.2015.2.157 |
[17] |
Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277 |
[18] |
Alexander J. Zaslavski. Structure of approximate solutions of Bolza variational problems on large intervals. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1283-1316. doi: 10.3934/dcdss.2018072 |
[19] |
Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644 |
[20] |
Luis C. García-Naranjo, Mats Vermeeren. Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics. Journal of Computational Dynamics, 2021, 8 (3) : 241-271. doi: 10.3934/jcd.2021011 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]