October  2015, 8(5): 871-880. doi: 10.3934/dcdss.2015.8.871

Distance function and extension in normal direction for implicitly defined interfaces

1. 

Department of Mathematics and Descriptive Geometry, Slovak University of Technology, Bratislava, Slovak Republic, Slovak Republic, Slovak Republic

Received  January 2014 Revised  June 2014 Published  July 2015

In this paper we present a novel application of extrapolation procedure for three popular numerical algorithms to compute the distance function for an interface that is given only implicitly. The methods include the fast marching method [8], the fast sweeping method [10] and the linearization method [10]. The extrapolation procedure removes the necessity of a special initialization procedure for the grid nodes next to the interface that is used so far with the methods, thus it represents a natural extension of these methods. The extrapolation procedure can be used also for an extension of a function that is defined only locally on the interface in the direction given by the gradient of distance function [2].
Citation: Peter Frolkovič, Karol Mikula, Jozef Urbán. Distance function and extension in normal direction for implicitly defined interfaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 871-880. doi: 10.3934/dcdss.2015.8.871
References:
[1]

D. Adalsteinsson and J. Sethian, The fast construction of extension velocities in level set methods,, J. Comput. Phys., 148 (1999), 2.  doi: 10.1006/jcph.1998.6090.  Google Scholar

[2]

T. D. Aslam, A partial differential equation approach to multidimensional extrapolation,, J. Comput. Phys., 193 (2004), 349.  doi: 10.1016/j.jcp.2003.08.001.  Google Scholar

[3]

S. Fomel, Traveltime Computation with the Linearized Eikonal Equation,, Technical report, (1997).   Google Scholar

[4]

P. Frolkovič, Flux-based level set method for extrapolation along characteristics using immersed interface formulation,, In P. Struk, (2010), 15.   Google Scholar

[5]

S. Hysing and S. Turek, The Eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids,, In Proceedings of Algoritmy, (2005), 22.   Google Scholar

[6]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,, Springer, (2003).  doi: 10.1007/b98879.  Google Scholar

[7]

E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading,, SIAM J. Num. Anal., 29 (1992), 867.  doi: 10.1137/0729053.  Google Scholar

[8]

J. Sethian, A fast marching level set method for monotonically advancing fronts,, Proc. Nat. Acad. Sci., 93 (1996), 1591.  doi: 10.1073/pnas.93.4.1591.  Google Scholar

[9]

J. Sethian, Level Set Methods and Fast Marching Methods,, Cambridge University Press, (1999).   Google Scholar

[10]

H. Zhao, A fast sweeping method for eikonal equations,, Math. Comput., 74 (2005), 603.  doi: 10.1090/S0025-5718-04-01678-3.  Google Scholar

[11]

H. Zhao, T. Chan, B. Merriman and S. Osher, A variational level set approach to multiphase motion,, J. Comput. Phys., 127 (1996), 179.  doi: 10.1006/jcph.1996.0167.  Google Scholar

show all references

References:
[1]

D. Adalsteinsson and J. Sethian, The fast construction of extension velocities in level set methods,, J. Comput. Phys., 148 (1999), 2.  doi: 10.1006/jcph.1998.6090.  Google Scholar

[2]

T. D. Aslam, A partial differential equation approach to multidimensional extrapolation,, J. Comput. Phys., 193 (2004), 349.  doi: 10.1016/j.jcp.2003.08.001.  Google Scholar

[3]

S. Fomel, Traveltime Computation with the Linearized Eikonal Equation,, Technical report, (1997).   Google Scholar

[4]

P. Frolkovič, Flux-based level set method for extrapolation along characteristics using immersed interface formulation,, In P. Struk, (2010), 15.   Google Scholar

[5]

S. Hysing and S. Turek, The Eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids,, In Proceedings of Algoritmy, (2005), 22.   Google Scholar

[6]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,, Springer, (2003).  doi: 10.1007/b98879.  Google Scholar

[7]

E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading,, SIAM J. Num. Anal., 29 (1992), 867.  doi: 10.1137/0729053.  Google Scholar

[8]

J. Sethian, A fast marching level set method for monotonically advancing fronts,, Proc. Nat. Acad. Sci., 93 (1996), 1591.  doi: 10.1073/pnas.93.4.1591.  Google Scholar

[9]

J. Sethian, Level Set Methods and Fast Marching Methods,, Cambridge University Press, (1999).   Google Scholar

[10]

H. Zhao, A fast sweeping method for eikonal equations,, Math. Comput., 74 (2005), 603.  doi: 10.1090/S0025-5718-04-01678-3.  Google Scholar

[11]

H. Zhao, T. Chan, B. Merriman and S. Osher, A variational level set approach to multiphase motion,, J. Comput. Phys., 127 (1996), 179.  doi: 10.1006/jcph.1996.0167.  Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[5]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[6]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[9]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]