-
Previous Article
Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations
- DCDS-S Home
- This Issue
-
Next Article
On spiral solutions to generalized crystalline motion with a rotating tip motion
Conserved quantities of the integrable discrete hungry systems
1. | Department of Mathematical Science for Information Sciences, Graduate School of Science, Tokyo University of Science, Tokyo 162-8601, Japan |
2. | Department of Mathematical Sciences, Shibaura Institute of Technology, Saitama 337-8570, Japan |
3. | Department of Communication Engineering and Informatics, The University of Electro-Communications, Tokyo 182-8585, Japan/JST CREST, Tokyo, Japan |
4. | Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan |
5. | Department of Mathematical Information Science, Tokyo University of Science, Tokyo 162-8601, Japan |
6. | Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan |
References:
[1] |
LAPACK:, http://www.netlib.org/lapack/, ., (). Google Scholar |
[2] |
Inverse Probl., 25 (2009), 015007, 17pp.
doi: 10.1088/0266-5611/25/1/015007. |
[3] |
Annal. Mat. Pura Appl., 192 (2013), 423-445.
doi: 10.1007/s10231-011-0231-0. |
[4] |
Phys. Lett. A, 375 (2011), 303-308.
doi: 10.1016/j.physleta.2010.11.029. |
[5] |
Sūrikaisekikenkyūsho Kōkyūroku, 822 (1993), 144-152. |
[6] |
Inverse Probl., 18 (2002), 1569-1578.
doi: 10.1088/0266-5611/18/6/309. |
[7] |
Jpn. J. Indust. Appl. Math., 23 (2006), 239-259.
doi: 10.1007/BF03167593. |
[8] |
Inverse Problems, 15 (1999), 1639-1662.
doi: 10.1088/0266-5611/15/6/314. |
show all references
References:
[1] |
LAPACK:, http://www.netlib.org/lapack/, ., (). Google Scholar |
[2] |
Inverse Probl., 25 (2009), 015007, 17pp.
doi: 10.1088/0266-5611/25/1/015007. |
[3] |
Annal. Mat. Pura Appl., 192 (2013), 423-445.
doi: 10.1007/s10231-011-0231-0. |
[4] |
Phys. Lett. A, 375 (2011), 303-308.
doi: 10.1016/j.physleta.2010.11.029. |
[5] |
Sūrikaisekikenkyūsho Kōkyūroku, 822 (1993), 144-152. |
[6] |
Inverse Probl., 18 (2002), 1569-1578.
doi: 10.1088/0266-5611/18/6/309. |
[7] |
Jpn. J. Indust. Appl. Math., 23 (2006), 239-259.
doi: 10.1007/BF03167593. |
[8] |
Inverse Problems, 15 (1999), 1639-1662.
doi: 10.1088/0266-5611/15/6/314. |
[1] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[2] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[3] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021071 |
[4] |
De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021023 |
[5] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402 |
[6] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[7] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[8] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[9] |
Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005 |
[10] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[11] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[12] |
Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021082 |
[13] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[14] |
Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002 |
[15] |
Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062 |
[16] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[17] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[18] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[19] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375 |
[20] |
Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021007 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]