• Previous Article
    Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations
  • DCDS-S Home
  • This Issue
  • Next Article
    On spiral solutions to generalized crystalline motion with a rotating tip motion
October  2015, 8(5): 889-899. doi: 10.3934/dcdss.2015.8.889

Conserved quantities of the integrable discrete hungry systems

1. 

Department of Mathematical Science for Information Sciences, Graduate School of Science, Tokyo University of Science, Tokyo 162-8601, Japan

2. 

Department of Mathematical Sciences, Shibaura Institute of Technology, Saitama 337-8570, Japan

3. 

Department of Communication Engineering and Informatics, The University of Electro-Communications, Tokyo 182-8585, Japan/JST CREST, Tokyo, Japan

4. 

Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan

5. 

Department of Mathematical Information Science, Tokyo University of Science, Tokyo 162-8601, Japan

6. 

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Received  December 2013 Revised  December 2013 Published  July 2015

In this paper, conserved quantities of the discrete hungry Lotka-Volterra (dhLV) system are derived. Our approach is based on the Lax representation of the dhLV system, which expresses the time evolution of the dhLV system as a similarity transformation on a certain square matrix. Thus, coefficients of the characteristic polynomial of this matrix constitute conserved quantities of the dhLV system. These coefficients are calculated explicitly through a recurrence relation among the characteristic polynomials of its leading principal submatrices. The conserved quantities of the discrete hungry Toda (dhToda) equation is also derived with the help of the Bäcklund transformation between the dhLV system and the dhToda equation.
Citation: Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889
References:
[1]

LAPACK:, http://www.netlib.org/lapack/, ., ().   Google Scholar

[2]

A. Fukuda, E. Ishiwata, M. Iwasaki and Y. Nakamura, The discrete hungry Lotka-Volterra system and a new algorithm for computing matrix eigenvalues,, Inverse Probl., 25 (2009).  doi: 10.1088/0266-5611/25/1/015007.  Google Scholar

[3]

A. Fukuda, E. Ishiwata, Y. Yamamoto, M. Iwasaki and Y. Nakamura, Integrable discrete hungry systems and their related matrix eigenvalues,, Annal. Mat. Pura Appl., 192 (2013), 423.  doi: 10.1007/s10231-011-0231-0.  Google Scholar

[4]

A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata and Y. Nakamura, A Bäcklund transformation between two integrable discrete hungry systems,, Phys. Lett. A, 375 (2011), 303.  doi: 10.1016/j.physleta.2010.11.029.  Google Scholar

[5]

R. Hirota, S. Tsujimoto and T. Imai, Difference scheme of soliton equations,, Sūrikaisekikenkyūsho Kōkyūroku, 822 (1993), 144.   Google Scholar

[6]

M. Iwasaki and Y. Nakamura, On the convergence of a solution of the discrete Lotka-Volterra system,, Inverse Probl., 18 (2002), 1569.  doi: 10.1088/0266-5611/18/6/309.  Google Scholar

[7]

M. Iwasaki and Y. Nakamura, Accurate computation of singular values in terms of shifted integrable schemes,, Jpn. J. Indust. Appl. Math., 23 (2006), 239.  doi: 10.1007/BF03167593.  Google Scholar

[8]

T. Tokihiro, A. Nagai and J. Satsuma, Proof of solitonial nature of box and ball systems by means of inverse ultra-discretization,, Inverse Problems, 15 (1999), 1639.  doi: 10.1088/0266-5611/15/6/314.  Google Scholar

show all references

References:
[1]

LAPACK:, http://www.netlib.org/lapack/, ., ().   Google Scholar

[2]

A. Fukuda, E. Ishiwata, M. Iwasaki and Y. Nakamura, The discrete hungry Lotka-Volterra system and a new algorithm for computing matrix eigenvalues,, Inverse Probl., 25 (2009).  doi: 10.1088/0266-5611/25/1/015007.  Google Scholar

[3]

A. Fukuda, E. Ishiwata, Y. Yamamoto, M. Iwasaki and Y. Nakamura, Integrable discrete hungry systems and their related matrix eigenvalues,, Annal. Mat. Pura Appl., 192 (2013), 423.  doi: 10.1007/s10231-011-0231-0.  Google Scholar

[4]

A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata and Y. Nakamura, A Bäcklund transformation between two integrable discrete hungry systems,, Phys. Lett. A, 375 (2011), 303.  doi: 10.1016/j.physleta.2010.11.029.  Google Scholar

[5]

R. Hirota, S. Tsujimoto and T. Imai, Difference scheme of soliton equations,, Sūrikaisekikenkyūsho Kōkyūroku, 822 (1993), 144.   Google Scholar

[6]

M. Iwasaki and Y. Nakamura, On the convergence of a solution of the discrete Lotka-Volterra system,, Inverse Probl., 18 (2002), 1569.  doi: 10.1088/0266-5611/18/6/309.  Google Scholar

[7]

M. Iwasaki and Y. Nakamura, Accurate computation of singular values in terms of shifted integrable schemes,, Jpn. J. Indust. Appl. Math., 23 (2006), 239.  doi: 10.1007/BF03167593.  Google Scholar

[8]

T. Tokihiro, A. Nagai and J. Satsuma, Proof of solitonial nature of box and ball systems by means of inverse ultra-discretization,, Inverse Problems, 15 (1999), 1639.  doi: 10.1088/0266-5611/15/6/314.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[6]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[7]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[8]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[9]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

[Back to Top]