February  2015, 8(1): 91-118. doi: 10.3934/dcdss.2015.8.91

Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems

1. 

ANMC, Section de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland, Switzerland

2. 

École Normale Supérieure de Rennes, INRIA Rennes, IRMAR, CNRS, UEB, Campus de Ker Lann, 35170 Bruz, France

Received  April 2013 Revised  November 2013 Published  July 2014

The reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) for a class of nonlinear homogenization elliptic problems of nonmonotone type is introduced. In this approach, the solutions of the micro problems needed to estimate the macroscopic data of the homogenized problem are selected by a greedy algorithm and computed in an offline stage. It is shown that the use of reduced basis (RB) for nonlinear numerical homogenization reduces considerably the computational cost of the finite element heterogeneous multiscale method (FE-HMM). As the precomputed microscopic functions depend nonlinearly on the macroscopic solution, we introduce a new a posteriori error estimator for the greedy algorithm that guarantees the convergence of the online Newton method. A priori error estimates and uniqueness of the numerical solution are also established. Numerical experiments illustrate the efficiency of the proposed method.
Citation: Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91
References:
[1]

A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM,, SIAM, 4 (2005), 447. doi: 10.1137/040607137. Google Scholar

[2]

A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: A unified framework,, Ser. Contemp. Appl. Math. CAM, 16 (2011), 280. doi: 10.1142/9789814366892_0009. Google Scholar

[3]

A. Abdulle and Y. Bai, Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems,, J. Comput. Phys., 231 (2012), 7014. doi: 10.1016/j.jcp.2012.02.019. Google Scholar

[4]

A. Abdulle and Y. Bai, Adaptive reduced basis finite element heterogeneous multiscale method,, Comput. Methods Appl. Mech. Engrg., 257 (2013), 203. doi: 10.1016/j.cma.2013.01.002. Google Scholar

[5]

A. Abdulle, Y. Bai and G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems,, \emph{Int. J. Numer. Meth. Engng.}, 99 (2014), 469. doi: 10.1002/nme.4682. Google Scholar

[6]

A. Abdulle and A. Nonnenmacher, A short and versatile finite element multiscale code for homogenization problem,, Comput. Methods Appl. Mech. Engrg., 198 (2009), 2839. doi: 10.1016/j.cma.2009.03.019. Google Scholar

[7]

A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces,, SIAM, 3 (2005), 195. doi: 10.1137/030600771. Google Scholar

[8]

A. Abdulle and G. Vilmart, The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods,, C. R. Acad. Sci. Paris, 349 (2011), 1041. doi: 10.1016/j.crma.2011.09.005. Google Scholar

[9]

A. Abdulle and G. Vilmart, Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: A fully discrete space-time analysis,, Math. Models Methods Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500029. Google Scholar

[10]

A. Abdulle and G. Vilmart, A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems,, Numer. Math., 121 (2012), 397. doi: 10.1007/s00211-011-0438-4. Google Scholar

[11]

A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems,, Math. Comp., 83 (2014), 513. doi: 10.1090/S0025-5718-2013-02758-5. Google Scholar

[12]

F. Albrecht, B. Haasdonk, S. Kaulmann and M. Ohlberger, The localized reduced basis multiscale method,, Proc. of ALGORITMY, (2012), 393. Google Scholar

[13]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems,, in Function Spaces, (1992), 9. doi: 10.1007/978-3-663-11336-2_1. Google Scholar

[14]

M. Artola and G. Duvaut, Un résultat d'homogénéisation pour une classe de problèmes de diffusion non linéaires stationnaires,, Ann. Fac. Sci. Toulouse Math., 4 (1982), 1. doi: 10.5802/afst.572. Google Scholar

[15]

M. Barrault, Y. Maday, N. Nguyen and A. Patera, An ‘empirical interpolation method': Application to efficient reduced-basis discretization of partial differential equations,, C. R. Acad. Sci. Paris Ser. I, 339 (2004), 667. doi: 10.1016/j.crma.2004.08.006. Google Scholar

[16]

J. Bear and Y. Bachmat, Introduction to Modelling of Transport Phenomena in Porous Media,, Kluwer Academic, (1990). doi: 10.1007/978-94-009-1926-6. Google Scholar

[17]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, North-Holland Publishing Co., (1978). Google Scholar

[18]

P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods,, SIAM J. Math. Anal., 43 (2011), 1457. doi: 10.1137/100795772. Google Scholar

[19]

L. Boccardo and F. Murat, Homogénéisation de problèmes quasi-linéaires,, Publ. IRMA, 3 (1981), 13. Google Scholar

[20]

S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting,, Multiscale Model. Simul., 7 (2008), 466. doi: 10.1137/070688791. Google Scholar

[21]

A. Buffa, Y. Maday, A. T. Patera, C. Prud'homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis,, ESAIM: M2AN, 46 (2012), 595. doi: 10.1051/m2an/2011056. Google Scholar

[22]

Z. Chen, W. Deng and H. Ye, Upscaling of a class of nonlinear parabolic equations for the flow transport in heterogeneous porous media,, Commun. Math. Sci., 3 (2005), 493. doi: 10.4310/CMS.2005.v3.n4.a2. Google Scholar

[23]

Z. Chen and T. Y. Savchuk, Analysis of the multiscale finite element method for nonlinear and random homogenization problems,, SIAM J. Numer. Anal., 46 (): 260. doi: 10.1137/060654207. Google Scholar

[24]

M. Chipot, Elliptic Equations: An Introductory Course,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009). doi: 10.1007/978-3-7643-9982-5. Google Scholar

[25]

P. Ciarlet and P. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods,, Math. Foundation of the FEM with Applications to PDE, (1972), 409. Google Scholar

[26]

W. E and B. Engquist, The heterogeneous multiscale methods,, Commun. Math. Sci., 1 (2003), 87. doi: 10.4310/CMS.2003.v1.n1.a8. Google Scholar

[27]

W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems,, J. Amer. Math. Soc., 18 (2005), 121. doi: 10.1090/S0894-0347-04-00469-2. Google Scholar

[28]

N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators,, Ann. Mat. Pura Appl., 146 (1987), 1. doi: 10.1007/BF01762357. Google Scholar

[29]

J. J. Douglas and T. Dupont, A Galerkin method for a nonlinear Dirichlet problem,, Math. Comp., 29 (1975), 689. doi: 10.1090/S0025-5718-1975-0431747-2. Google Scholar

[30]

V. Jikov, S. Kozlov and O. Oleinik, Homogenization of Differential Operators and Integral Functionals,, Springer-Verlag, (1994). doi: 10.1007/978-3-642-84659-5. Google Scholar

[31]

A. Karageorghis and D. Lesnic, Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions,, Comput. Methods Appl. Mech. Engrg., 197 (2008), 3122. doi: 10.1016/j.cma.2008.02.011. Google Scholar

[32]

S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems,, C. R. Math. Acad. Sci. Paris, 349 (2011), 1233. doi: 10.1016/j.crma.2011.10.024. Google Scholar

[33]

Y. Maday, A. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations,, J. Sci. Comput., 17 (2002), 437. doi: 10.1023/A:1015145924517. Google Scholar

[34]

N. C. Nguyen, A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales,, J. Comp. Phys., 227 (2008), 9807. doi: 10.1016/j.jcp.2008.07.025. Google Scholar

[35]

J. A. Nitsche, On $L_{\infty }$-convergence of finite element approximations to the solution of a nonlinear boundary value problem,, in Topics in Numerical Analysis, (1976), 317. Google Scholar

[36]

A. T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations,, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering, (2007). Google Scholar

[37]

C. Prud'homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods,, J. Fluids Eng., 124 (2002), 70. doi: 10.1115/1.1448332. Google Scholar

[38]

G. Rozza, D. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations,, Arch. Comput. Methods. Eng., 15 (2008), 229. doi: 10.1007/s11831-008-9019-9. Google Scholar

show all references

References:
[1]

A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM,, SIAM, 4 (2005), 447. doi: 10.1137/040607137. Google Scholar

[2]

A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: A unified framework,, Ser. Contemp. Appl. Math. CAM, 16 (2011), 280. doi: 10.1142/9789814366892_0009. Google Scholar

[3]

A. Abdulle and Y. Bai, Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems,, J. Comput. Phys., 231 (2012), 7014. doi: 10.1016/j.jcp.2012.02.019. Google Scholar

[4]

A. Abdulle and Y. Bai, Adaptive reduced basis finite element heterogeneous multiscale method,, Comput. Methods Appl. Mech. Engrg., 257 (2013), 203. doi: 10.1016/j.cma.2013.01.002. Google Scholar

[5]

A. Abdulle, Y. Bai and G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems,, \emph{Int. J. Numer. Meth. Engng.}, 99 (2014), 469. doi: 10.1002/nme.4682. Google Scholar

[6]

A. Abdulle and A. Nonnenmacher, A short and versatile finite element multiscale code for homogenization problem,, Comput. Methods Appl. Mech. Engrg., 198 (2009), 2839. doi: 10.1016/j.cma.2009.03.019. Google Scholar

[7]

A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces,, SIAM, 3 (2005), 195. doi: 10.1137/030600771. Google Scholar

[8]

A. Abdulle and G. Vilmart, The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods,, C. R. Acad. Sci. Paris, 349 (2011), 1041. doi: 10.1016/j.crma.2011.09.005. Google Scholar

[9]

A. Abdulle and G. Vilmart, Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: A fully discrete space-time analysis,, Math. Models Methods Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500029. Google Scholar

[10]

A. Abdulle and G. Vilmart, A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems,, Numer. Math., 121 (2012), 397. doi: 10.1007/s00211-011-0438-4. Google Scholar

[11]

A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems,, Math. Comp., 83 (2014), 513. doi: 10.1090/S0025-5718-2013-02758-5. Google Scholar

[12]

F. Albrecht, B. Haasdonk, S. Kaulmann and M. Ohlberger, The localized reduced basis multiscale method,, Proc. of ALGORITMY, (2012), 393. Google Scholar

[13]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems,, in Function Spaces, (1992), 9. doi: 10.1007/978-3-663-11336-2_1. Google Scholar

[14]

M. Artola and G. Duvaut, Un résultat d'homogénéisation pour une classe de problèmes de diffusion non linéaires stationnaires,, Ann. Fac. Sci. Toulouse Math., 4 (1982), 1. doi: 10.5802/afst.572. Google Scholar

[15]

M. Barrault, Y. Maday, N. Nguyen and A. Patera, An ‘empirical interpolation method': Application to efficient reduced-basis discretization of partial differential equations,, C. R. Acad. Sci. Paris Ser. I, 339 (2004), 667. doi: 10.1016/j.crma.2004.08.006. Google Scholar

[16]

J. Bear and Y. Bachmat, Introduction to Modelling of Transport Phenomena in Porous Media,, Kluwer Academic, (1990). doi: 10.1007/978-94-009-1926-6. Google Scholar

[17]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, North-Holland Publishing Co., (1978). Google Scholar

[18]

P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods,, SIAM J. Math. Anal., 43 (2011), 1457. doi: 10.1137/100795772. Google Scholar

[19]

L. Boccardo and F. Murat, Homogénéisation de problèmes quasi-linéaires,, Publ. IRMA, 3 (1981), 13. Google Scholar

[20]

S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting,, Multiscale Model. Simul., 7 (2008), 466. doi: 10.1137/070688791. Google Scholar

[21]

A. Buffa, Y. Maday, A. T. Patera, C. Prud'homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis,, ESAIM: M2AN, 46 (2012), 595. doi: 10.1051/m2an/2011056. Google Scholar

[22]

Z. Chen, W. Deng and H. Ye, Upscaling of a class of nonlinear parabolic equations for the flow transport in heterogeneous porous media,, Commun. Math. Sci., 3 (2005), 493. doi: 10.4310/CMS.2005.v3.n4.a2. Google Scholar

[23]

Z. Chen and T. Y. Savchuk, Analysis of the multiscale finite element method for nonlinear and random homogenization problems,, SIAM J. Numer. Anal., 46 (): 260. doi: 10.1137/060654207. Google Scholar

[24]

M. Chipot, Elliptic Equations: An Introductory Course,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009). doi: 10.1007/978-3-7643-9982-5. Google Scholar

[25]

P. Ciarlet and P. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods,, Math. Foundation of the FEM with Applications to PDE, (1972), 409. Google Scholar

[26]

W. E and B. Engquist, The heterogeneous multiscale methods,, Commun. Math. Sci., 1 (2003), 87. doi: 10.4310/CMS.2003.v1.n1.a8. Google Scholar

[27]

W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems,, J. Amer. Math. Soc., 18 (2005), 121. doi: 10.1090/S0894-0347-04-00469-2. Google Scholar

[28]

N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators,, Ann. Mat. Pura Appl., 146 (1987), 1. doi: 10.1007/BF01762357. Google Scholar

[29]

J. J. Douglas and T. Dupont, A Galerkin method for a nonlinear Dirichlet problem,, Math. Comp., 29 (1975), 689. doi: 10.1090/S0025-5718-1975-0431747-2. Google Scholar

[30]

V. Jikov, S. Kozlov and O. Oleinik, Homogenization of Differential Operators and Integral Functionals,, Springer-Verlag, (1994). doi: 10.1007/978-3-642-84659-5. Google Scholar

[31]

A. Karageorghis and D. Lesnic, Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions,, Comput. Methods Appl. Mech. Engrg., 197 (2008), 3122. doi: 10.1016/j.cma.2008.02.011. Google Scholar

[32]

S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems,, C. R. Math. Acad. Sci. Paris, 349 (2011), 1233. doi: 10.1016/j.crma.2011.10.024. Google Scholar

[33]

Y. Maday, A. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations,, J. Sci. Comput., 17 (2002), 437. doi: 10.1023/A:1015145924517. Google Scholar

[34]

N. C. Nguyen, A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales,, J. Comp. Phys., 227 (2008), 9807. doi: 10.1016/j.jcp.2008.07.025. Google Scholar

[35]

J. A. Nitsche, On $L_{\infty }$-convergence of finite element approximations to the solution of a nonlinear boundary value problem,, in Topics in Numerical Analysis, (1976), 317. Google Scholar

[36]

A. T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations,, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering, (2007). Google Scholar

[37]

C. Prud'homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods,, J. Fluids Eng., 124 (2002), 70. doi: 10.1115/1.1448332. Google Scholar

[38]

G. Rozza, D. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations,, Arch. Comput. Methods. Eng., 15 (2008), 229. doi: 10.1007/s11831-008-9019-9. Google Scholar

[1]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[2]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[3]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[4]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[5]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[6]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[7]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[8]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[9]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[10]

Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks & Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711

[11]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[12]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[13]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[14]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[15]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[16]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019041

[17]

Rouhollah Tavakoli, Hongchao Zhang. A nonmonotone spectral projected gradient method for large-scale topology optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 395-412. doi: 10.3934/naco.2012.2.395

[18]

Yigui Ou, Yuanwen Liu. A memory gradient method based on the nonmonotone technique. Journal of Industrial & Management Optimization, 2017, 13 (2) : 857-872. doi: 10.3934/jimo.2016050

[19]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[20]

M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]