October  2015, 8(5): 913-931. doi: 10.3934/dcdss.2015.8.913

Diamond--cell finite volume scheme for the Heston model

1. 

Department of Mathematics, Slovak University of Technology, Radlinského 11, 813 68 Bratislava, Slovak Republic

2. 

Department of Mathematics, Slovak University of Technology, Radlinskeho 11, 813 68 Bratislava, Slovak Republic

Received  December 2013 Revised  July 2014 Published  July 2015

The objective of this article is to propose a novel numerical scheme for solving the partial differential equation arising in the Heston stochastic volatility model. We discretize the governing advection-diffusion-reaction equation using the finite volume technique. The diffusion tensor is treated by means of the diamond--cell approximation. A theoretical result concerning the existence and uniqueness of the solution to the corresponding system of linear equations is proved. Numerical experiments regarding accuracy and order of convergence are shown.
Citation: Pavol Kútik, Karol Mikula. Diamond--cell finite volume scheme for the Heston model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 913-931. doi: 10.3934/dcdss.2015.8.913
References:
[1]

L. Andersen, Simple and efficient simulation of the Heston stochastic volatility model,, Journal of Computational Finance, 11 (2008), 1.   Google Scholar

[2]

F. Black and and M. Scholes, The pricing of options and corporate liabilities,, The Journal of Political Economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues,, Quantitative Finance, 1 (2001), 223.  doi: 10.1080/713665670.  Google Scholar

[4]

Y. Coudiere, J. P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem,, M2AN Math. Model. Numer. Anal., 33 (1999), 493.  doi: 10.1051/m2an:1999149.  Google Scholar

[5]

J. Cox, J. Ingersoll and S. Ross, A theory of the term structure of interest rates,, Econometrica, 53 (1985), 385.  doi: 10.2307/1911242.  Google Scholar

[6]

O. Drblíková and K. Mikula, Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing,, SIAM Journal on Numerical Analysis, 46 (2007), 37.  doi: 10.1137/070685038.  Google Scholar

[7]

R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods,, in: Handbook Of Numerical Analysis, (2000).   Google Scholar

[8]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, Atti Accad. Naz. Lincei, 5 (1956), 1.   Google Scholar

[9]

P. A. Forsyth, K. R. Vetzal and R. Zvan, A finite element approach to the pricing of discrete lookbacks with stochastic volatility,, Applied Mathematical Finance, 6 (1999), 87.  doi: 10.1080/135048699334564.  Google Scholar

[10]

P. Frolkovič and K. Mikula, High-resolution flux-based level set method,, SIAM Journal on Scientific Computing, 29 (2007), 579.  doi: 10.1137/050646561.  Google Scholar

[11]

J. Gatheral, The Volatility Surface: A Practitioner's Guide,, John Wiley & Sons, (2006).   Google Scholar

[12]

S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, The Review of Financial Studies, 6 (1993), 327.  doi: 10.1093/rfs/6.2.327.  Google Scholar

[13]

K. J. In't Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation,, Internation Journal of Numerical Analysis and Modeling, 7 (2010), 303.   Google Scholar

[14]

P. Kútik, Numerical Solution of Partial Differential Equations in Financial Mathematics,, PhD. Thesis, (2014).   Google Scholar

[15]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511791253.  Google Scholar

[16]

R. Merton, Theory of rational option pricing,, The Bell Journal of Economics and Management Science, 4 (1973), 141.  doi: 10.2307/3003143.  Google Scholar

[17]

R. Zvan, P. A. Forsyth and K. R. Vetzal, A finite volume approach for contingent claims valuation,, IMA J. Numer. Anal., 21 (2001), 703.  doi: 10.1093/imanum/21.3.703.  Google Scholar

show all references

References:
[1]

L. Andersen, Simple and efficient simulation of the Heston stochastic volatility model,, Journal of Computational Finance, 11 (2008), 1.   Google Scholar

[2]

F. Black and and M. Scholes, The pricing of options and corporate liabilities,, The Journal of Political Economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues,, Quantitative Finance, 1 (2001), 223.  doi: 10.1080/713665670.  Google Scholar

[4]

Y. Coudiere, J. P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem,, M2AN Math. Model. Numer. Anal., 33 (1999), 493.  doi: 10.1051/m2an:1999149.  Google Scholar

[5]

J. Cox, J. Ingersoll and S. Ross, A theory of the term structure of interest rates,, Econometrica, 53 (1985), 385.  doi: 10.2307/1911242.  Google Scholar

[6]

O. Drblíková and K. Mikula, Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing,, SIAM Journal on Numerical Analysis, 46 (2007), 37.  doi: 10.1137/070685038.  Google Scholar

[7]

R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods,, in: Handbook Of Numerical Analysis, (2000).   Google Scholar

[8]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, Atti Accad. Naz. Lincei, 5 (1956), 1.   Google Scholar

[9]

P. A. Forsyth, K. R. Vetzal and R. Zvan, A finite element approach to the pricing of discrete lookbacks with stochastic volatility,, Applied Mathematical Finance, 6 (1999), 87.  doi: 10.1080/135048699334564.  Google Scholar

[10]

P. Frolkovič and K. Mikula, High-resolution flux-based level set method,, SIAM Journal on Scientific Computing, 29 (2007), 579.  doi: 10.1137/050646561.  Google Scholar

[11]

J. Gatheral, The Volatility Surface: A Practitioner's Guide,, John Wiley & Sons, (2006).   Google Scholar

[12]

S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, The Review of Financial Studies, 6 (1993), 327.  doi: 10.1093/rfs/6.2.327.  Google Scholar

[13]

K. J. In't Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation,, Internation Journal of Numerical Analysis and Modeling, 7 (2010), 303.   Google Scholar

[14]

P. Kútik, Numerical Solution of Partial Differential Equations in Financial Mathematics,, PhD. Thesis, (2014).   Google Scholar

[15]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511791253.  Google Scholar

[16]

R. Merton, Theory of rational option pricing,, The Bell Journal of Economics and Management Science, 4 (1973), 141.  doi: 10.2307/3003143.  Google Scholar

[17]

R. Zvan, P. A. Forsyth and K. R. Vetzal, A finite volume approach for contingent claims valuation,, IMA J. Numer. Anal., 21 (2001), 703.  doi: 10.1093/imanum/21.3.703.  Google Scholar

[1]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[9]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[13]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]