October  2015, 8(5): 933-951. doi: 10.3934/dcdss.2015.8.933

Truss structure design using a length-oriented surface remeshing technique

1. 

Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81368 Bratislava, Slovak Republic, Slovak Republic

2. 

Hutnícka 10/51, 05201 Spišská Nová Ves, Slovak Republic

Received  December 2013 Revised  June 2014 Published  July 2015

We present a method that can be used for designing truss structures representing either minimal surface shapes or general free-form shapes. The structures are designed so that they meet some specific criteria concerning their aesthetic properties and especially the lengths of the truss elements. We explain a technique for tangential redistribution of points on evolving surfaces that allows to obtain equally sized truss elements in selected subsets of the structure. This technique is applied to surfaces evolving by their mean curvature yielding constructions that approximate minimal surface shapes. Afterwards, we show how to remesh static free-form surfaces.
Citation: Karol Mikula, Mariana Remešíková, Peter Novysedlák. Truss structure design using a length-oriented surface remeshing technique. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 933-951. doi: 10.3934/dcdss.2015.8.933
References:
[1]

M. R. Barnes, Form finding and analysis of tension structures by dynamic relaxation, International Journal of Space Structures, 14 (1999), 89-104. doi: 10.1260/0266351991494722.

[2]

K. U. Bletzinger, M. Firl, J. Linhard and R. Wüchner, Optimal shapes of mechanically motivated surfaces, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 324-333. doi: 10.1016/j.cma.2008.09.009.

[3]

M. Húska, M. Medĭa, K. Mikula, P. Novysedlák and M. Remeší ková, A new form-finding method based on mean curvature flow of surfaces, Proceedings of ALGORITMY 2012, 19th Conference on Scientific Computing, Podbanské, Slovakia, September 9-14, 2012, Publishing House of STU, (2012), 120-131.

[4]

M. Meyer, M. Desbrun, P. Schroeder and A. H. Barr, Discrete differential geometry operators for triangulated 2-manifolds, Visualization and Mathematics III (Hans-Christian Hege and Konrad Polthier, eds.), 3 (2003), 35-57.

[5]

B. Maurin and R. Motro, The surface stress density method as a form-finding tool for tensile membranes, Engineering Structures, 20 (1998), 712-719. doi: 10.1016/S0141-0296(97)00108-9.

[6]

K. Mikula, M. Remeší ková, P. Sarkoci, D. Ševčovič, Surface evolution with tangential redistribution of points,, to appear in SIAM Journal of Scientific Computing., (). 

[7]

K. Mikula and D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy, SIAM Journal on Applied Mathematics, 61 (2001), 1473-1501. doi: 10.1137/S0036139999359288.

[8]

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of planar curve with an external force, Mathematical Methods in Applied Sciences, 27 (2004), 1545-1565. doi: 10.1002/mma.514.

[9]

K. Mikula and J. Urbán, 3D curve evolution algorithm with tangential redistribution for a fully automatic finding of an ideal camera path in virtual colonoscopy, Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, 6667 (2012), 640-652. doi: 10.1007/978-3-642-24785-9_54.

[10]

A. Mottaghi Rad, H. Jamili and S. A. Behnejad, Length equalization of elements in single layer lattice spatial structures, Abstract Book of the IASS-APCS 2012 Conference, Seoul, Korea, (2012), 266-273.

[11]

J. C. C. Nitsche, A new uniqueness theorem for minimal surfaces, Arch. Rat. Mech. Anal., 52 (1973), 319-329. doi: 10.1007/BF00247466.

[12]

F. Pantano and H. Tamai, Geometric Multi-objective Optimization of Free-form Grid Shell Structures, Abstract Book of the IASS-APCS 2012 Conference, Seoul, Korea, (2012), 85-93.

[13]

R. M. O. Pauletti and P. M. Pimenta, The natural force density method for the shape finding of taut structures, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 4419-4428. doi: 10.1016/j.cma.2008.05.017.

[14]

U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates, Experim. Math., 2 (1993), 15-36. doi: 10.1080/10586458.1993.10504266.

[15]

H. J. Scheck, The force density method for form finding and computation of general networks, Computer Methods in Applied Mechanics and Engineering, 3 (1974), 115-134. doi: 10.1016/0045-7825(74)90045-0.

[16]

B. H. V. Topping and P. Ivanyi, Computer Aided Design of Cable Membrane Structures, Saxe-Coburg Publications on Computational Engineering, 2008.

show all references

References:
[1]

M. R. Barnes, Form finding and analysis of tension structures by dynamic relaxation, International Journal of Space Structures, 14 (1999), 89-104. doi: 10.1260/0266351991494722.

[2]

K. U. Bletzinger, M. Firl, J. Linhard and R. Wüchner, Optimal shapes of mechanically motivated surfaces, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 324-333. doi: 10.1016/j.cma.2008.09.009.

[3]

M. Húska, M. Medĭa, K. Mikula, P. Novysedlák and M. Remeší ková, A new form-finding method based on mean curvature flow of surfaces, Proceedings of ALGORITMY 2012, 19th Conference on Scientific Computing, Podbanské, Slovakia, September 9-14, 2012, Publishing House of STU, (2012), 120-131.

[4]

M. Meyer, M. Desbrun, P. Schroeder and A. H. Barr, Discrete differential geometry operators for triangulated 2-manifolds, Visualization and Mathematics III (Hans-Christian Hege and Konrad Polthier, eds.), 3 (2003), 35-57.

[5]

B. Maurin and R. Motro, The surface stress density method as a form-finding tool for tensile membranes, Engineering Structures, 20 (1998), 712-719. doi: 10.1016/S0141-0296(97)00108-9.

[6]

K. Mikula, M. Remeší ková, P. Sarkoci, D. Ševčovič, Surface evolution with tangential redistribution of points,, to appear in SIAM Journal of Scientific Computing., (). 

[7]

K. Mikula and D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy, SIAM Journal on Applied Mathematics, 61 (2001), 1473-1501. doi: 10.1137/S0036139999359288.

[8]

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of planar curve with an external force, Mathematical Methods in Applied Sciences, 27 (2004), 1545-1565. doi: 10.1002/mma.514.

[9]

K. Mikula and J. Urbán, 3D curve evolution algorithm with tangential redistribution for a fully automatic finding of an ideal camera path in virtual colonoscopy, Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, 6667 (2012), 640-652. doi: 10.1007/978-3-642-24785-9_54.

[10]

A. Mottaghi Rad, H. Jamili and S. A. Behnejad, Length equalization of elements in single layer lattice spatial structures, Abstract Book of the IASS-APCS 2012 Conference, Seoul, Korea, (2012), 266-273.

[11]

J. C. C. Nitsche, A new uniqueness theorem for minimal surfaces, Arch. Rat. Mech. Anal., 52 (1973), 319-329. doi: 10.1007/BF00247466.

[12]

F. Pantano and H. Tamai, Geometric Multi-objective Optimization of Free-form Grid Shell Structures, Abstract Book of the IASS-APCS 2012 Conference, Seoul, Korea, (2012), 85-93.

[13]

R. M. O. Pauletti and P. M. Pimenta, The natural force density method for the shape finding of taut structures, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 4419-4428. doi: 10.1016/j.cma.2008.05.017.

[14]

U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates, Experim. Math., 2 (1993), 15-36. doi: 10.1080/10586458.1993.10504266.

[15]

H. J. Scheck, The force density method for form finding and computation of general networks, Computer Methods in Applied Mechanics and Engineering, 3 (1974), 115-134. doi: 10.1016/0045-7825(74)90045-0.

[16]

B. H. V. Topping and P. Ivanyi, Computer Aided Design of Cable Membrane Structures, Saxe-Coburg Publications on Computational Engineering, 2008.

[1]

Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems and Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036

[2]

Giovanni Bellettini, Matteo Novaga, Giandomenico Orlandi. Eventual regularity for the parabolic minimal surface equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5711-5723. doi: 10.3934/dcds.2015.35.5711

[3]

Ramzi Alsaedi. Perturbation effects for the minimal surface equation with multiple variable exponents. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 139-150. doi: 10.3934/dcdss.2019010

[4]

Jiří Minarčík, Michal Beneš. Minimal surface generating flow for space curves of non-vanishing torsion. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022011

[5]

Bennett Palmer. Stable closed equilibria for anisotropic surface energies: Surfaces with edges. Journal of Geometric Mechanics, 2012, 4 (1) : 89-97. doi: 10.3934/jgm.2012.4.89

[6]

Emre Kiliç, Mehmet Çayören, Ali Yapar, Íbrahim Akduman. Reconstruction of perfectly conducting rough surfaces by the use of inhomogeneous surface impedance modeling. Inverse Problems and Imaging, 2009, 3 (2) : 295-307. doi: 10.3934/ipi.2009.3.295

[7]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, 2021, 29 (5) : 3081-3096. doi: 10.3934/era.2021027

[8]

Jean-Claude Cuenin, Robert Schippa. Fourier transform of surface–carried measures of two-dimensional generic surfaces and applications. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022079

[9]

Michal Kočvara, Jiří V. Outrata. Inverse truss design as a conic mathematical program with equilibrium constraints. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1329-1350. doi: 10.3934/dcdss.2017071

[10]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems and Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[11]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[12]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[13]

Erica Clay, Boris Hasselblatt, Enrique Pujals. Desingularization of surface maps. Electronic Research Announcements, 2017, 24: 1-9. doi: 10.3934/era.2017.24.001

[14]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[15]

Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593

[16]

Bum Ja Jin, Mariarosaria Padula. In a horizontal layer with free upper surface. Communications on Pure and Applied Analysis, 2002, 1 (3) : 379-415. doi: 10.3934/cpaa.2002.1.379

[17]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[18]

José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178

[19]

Kazuo Aoki, Pierre Charrier, Pierre Degond. A hierarchy of models related to nanoflows and surface diffusion. Kinetic and Related Models, 2011, 4 (1) : 53-85. doi: 10.3934/krm.2011.4.53

[20]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (0)

[Back to Top]