October  2015, 8(5): 933-951. doi: 10.3934/dcdss.2015.8.933

Truss structure design using a length-oriented surface remeshing technique

1. 

Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81368 Bratislava, Slovak Republic, Slovak Republic

2. 

Hutnícka 10/51, 05201 Spišská Nová Ves, Slovak Republic

Received  December 2013 Revised  June 2014 Published  July 2015

We present a method that can be used for designing truss structures representing either minimal surface shapes or general free-form shapes. The structures are designed so that they meet some specific criteria concerning their aesthetic properties and especially the lengths of the truss elements. We explain a technique for tangential redistribution of points on evolving surfaces that allows to obtain equally sized truss elements in selected subsets of the structure. This technique is applied to surfaces evolving by their mean curvature yielding constructions that approximate minimal surface shapes. Afterwards, we show how to remesh static free-form surfaces.
Citation: Karol Mikula, Mariana Remešíková, Peter Novysedlák. Truss structure design using a length-oriented surface remeshing technique. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 933-951. doi: 10.3934/dcdss.2015.8.933
References:
[1]

M. R. Barnes, Form finding and analysis of tension structures by dynamic relaxation,, International Journal of Space Structures, 14 (1999), 89.  doi: 10.1260/0266351991494722.  Google Scholar

[2]

K. U. Bletzinger, M. Firl, J. Linhard and R. Wüchner, Optimal shapes of mechanically motivated surfaces,, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 324.  doi: 10.1016/j.cma.2008.09.009.  Google Scholar

[3]

M. Húska, M. Medĭa, K. Mikula, P. Novysedlák and M. Remeší ková, A new form-finding method based on mean curvature flow of surfaces,, Proceedings of ALGORITMY 2012, (2012), 9.   Google Scholar

[4]

M. Meyer, M. Desbrun, P. Schroeder and A. H. Barr, Discrete differential geometry operators for triangulated 2-manifolds,, Visualization and Mathematics III (Hans-Christian Hege and Konrad Polthier, 3 (2003), 35.   Google Scholar

[5]

B. Maurin and R. Motro, The surface stress density method as a form-finding tool for tensile membranes,, Engineering Structures, 20 (1998), 712.  doi: 10.1016/S0141-0296(97)00108-9.  Google Scholar

[6]

K. Mikula, M. Remeší ková, P. Sarkoci, D. Ševčovič, Surface evolution with tangential redistribution of points,, to appear in SIAM Journal of Scientific Computing., ().   Google Scholar

[7]

K. Mikula and D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy,, SIAM Journal on Applied Mathematics, 61 (2001), 1473.  doi: 10.1137/S0036139999359288.  Google Scholar

[8]

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of planar curve with an external force,, Mathematical Methods in Applied Sciences, 27 (2004), 1545.  doi: 10.1002/mma.514.  Google Scholar

[9]

K. Mikula and J. Urbán, 3D curve evolution algorithm with tangential redistribution for a fully automatic finding of an ideal camera path in virtual colonoscopy,, Scale Space and Variational Methods in Computer Vision, 6667 (2012), 640.  doi: 10.1007/978-3-642-24785-9_54.  Google Scholar

[10]

A. Mottaghi Rad, H. Jamili and S. A. Behnejad, Length equalization of elements in single layer lattice spatial structures,, Abstract Book of the IASS-APCS 2012 Conference, (2012), 266.   Google Scholar

[11]

J. C. C. Nitsche, A new uniqueness theorem for minimal surfaces,, Arch. Rat. Mech. Anal., 52 (1973), 319.  doi: 10.1007/BF00247466.  Google Scholar

[12]

F. Pantano and H. Tamai, Geometric Multi-objective Optimization of Free-form Grid Shell Structures,, Abstract Book of the IASS-APCS 2012 Conference, (2012), 85.   Google Scholar

[13]

R. M. O. Pauletti and P. M. Pimenta, The natural force density method for the shape finding of taut structures,, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 4419.  doi: 10.1016/j.cma.2008.05.017.  Google Scholar

[14]

U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates,, Experim. Math., 2 (1993), 15.  doi: 10.1080/10586458.1993.10504266.  Google Scholar

[15]

H. J. Scheck, The force density method for form finding and computation of general networks,, Computer Methods in Applied Mechanics and Engineering, 3 (1974), 115.  doi: 10.1016/0045-7825(74)90045-0.  Google Scholar

[16]

B. H. V. Topping and P. Ivanyi, Computer Aided Design of Cable Membrane Structures,, Saxe-Coburg Publications on Computational Engineering, (2008).   Google Scholar

show all references

References:
[1]

M. R. Barnes, Form finding and analysis of tension structures by dynamic relaxation,, International Journal of Space Structures, 14 (1999), 89.  doi: 10.1260/0266351991494722.  Google Scholar

[2]

K. U. Bletzinger, M. Firl, J. Linhard and R. Wüchner, Optimal shapes of mechanically motivated surfaces,, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 324.  doi: 10.1016/j.cma.2008.09.009.  Google Scholar

[3]

M. Húska, M. Medĭa, K. Mikula, P. Novysedlák and M. Remeší ková, A new form-finding method based on mean curvature flow of surfaces,, Proceedings of ALGORITMY 2012, (2012), 9.   Google Scholar

[4]

M. Meyer, M. Desbrun, P. Schroeder and A. H. Barr, Discrete differential geometry operators for triangulated 2-manifolds,, Visualization and Mathematics III (Hans-Christian Hege and Konrad Polthier, 3 (2003), 35.   Google Scholar

[5]

B. Maurin and R. Motro, The surface stress density method as a form-finding tool for tensile membranes,, Engineering Structures, 20 (1998), 712.  doi: 10.1016/S0141-0296(97)00108-9.  Google Scholar

[6]

K. Mikula, M. Remeší ková, P. Sarkoci, D. Ševčovič, Surface evolution with tangential redistribution of points,, to appear in SIAM Journal of Scientific Computing., ().   Google Scholar

[7]

K. Mikula and D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy,, SIAM Journal on Applied Mathematics, 61 (2001), 1473.  doi: 10.1137/S0036139999359288.  Google Scholar

[8]

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of planar curve with an external force,, Mathematical Methods in Applied Sciences, 27 (2004), 1545.  doi: 10.1002/mma.514.  Google Scholar

[9]

K. Mikula and J. Urbán, 3D curve evolution algorithm with tangential redistribution for a fully automatic finding of an ideal camera path in virtual colonoscopy,, Scale Space and Variational Methods in Computer Vision, 6667 (2012), 640.  doi: 10.1007/978-3-642-24785-9_54.  Google Scholar

[10]

A. Mottaghi Rad, H. Jamili and S. A. Behnejad, Length equalization of elements in single layer lattice spatial structures,, Abstract Book of the IASS-APCS 2012 Conference, (2012), 266.   Google Scholar

[11]

J. C. C. Nitsche, A new uniqueness theorem for minimal surfaces,, Arch. Rat. Mech. Anal., 52 (1973), 319.  doi: 10.1007/BF00247466.  Google Scholar

[12]

F. Pantano and H. Tamai, Geometric Multi-objective Optimization of Free-form Grid Shell Structures,, Abstract Book of the IASS-APCS 2012 Conference, (2012), 85.   Google Scholar

[13]

R. M. O. Pauletti and P. M. Pimenta, The natural force density method for the shape finding of taut structures,, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 4419.  doi: 10.1016/j.cma.2008.05.017.  Google Scholar

[14]

U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates,, Experim. Math., 2 (1993), 15.  doi: 10.1080/10586458.1993.10504266.  Google Scholar

[15]

H. J. Scheck, The force density method for form finding and computation of general networks,, Computer Methods in Applied Mechanics and Engineering, 3 (1974), 115.  doi: 10.1016/0045-7825(74)90045-0.  Google Scholar

[16]

B. H. V. Topping and P. Ivanyi, Computer Aided Design of Cable Membrane Structures,, Saxe-Coburg Publications on Computational Engineering, (2008).   Google Scholar

[1]

Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems & Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036

[2]

Giovanni Bellettini, Matteo Novaga, Giandomenico Orlandi. Eventual regularity for the parabolic minimal surface equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5711-5723. doi: 10.3934/dcds.2015.35.5711

[3]

Ramzi Alsaedi. Perturbation effects for the minimal surface equation with multiple variable exponents. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 139-150. doi: 10.3934/dcdss.2019010

[4]

Emre Kiliç, Mehmet Çayören, Ali Yapar, Íbrahim Akduman. Reconstruction of perfectly conducting rough surfaces by the use of inhomogeneous surface impedance modeling. Inverse Problems & Imaging, 2009, 3 (2) : 295-307. doi: 10.3934/ipi.2009.3.295

[5]

Bennett Palmer. Stable closed equilibria for anisotropic surface energies: Surfaces with edges. Journal of Geometric Mechanics, 2012, 4 (1) : 89-97. doi: 10.3934/jgm.2012.4.89

[6]

Michal Kočvara, Jiří V. Outrata. Inverse truss design as a conic mathematical program with equilibrium constraints. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1329-1350. doi: 10.3934/dcdss.2017071

[7]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[8]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[9]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[10]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[11]

Erica Clay, Boris Hasselblatt, Enrique Pujals. Desingularization of surface maps. Electronic Research Announcements, 2017, 24: 1-9. doi: 10.3934/era.2017.24.001

[12]

Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593

[13]

Bum Ja Jin, Mariarosaria Padula. In a horizontal layer with free upper surface. Communications on Pure & Applied Analysis, 2002, 1 (3) : 379-415. doi: 10.3934/cpaa.2002.1.379

[14]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[15]

José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178

[16]

Kazuo Aoki, Pierre Charrier, Pierre Degond. A hierarchy of models related to nanoflows and surface diffusion. Kinetic & Related Models, 2011, 4 (1) : 53-85. doi: 10.3934/krm.2011.4.53

[17]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

[18]

Alfonso Artigue. Anomalous cw-expansive surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3511-3518. doi: 10.3934/dcds.2016.36.3511

[19]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[20]

E.B. Pitman, C.C. Nichita, A.K. Patra, A.C. Bauer, M. Bursik, A. Webb. A model of granular flows over an erodible surface. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 589-599. doi: 10.3934/dcdsb.2003.3.589

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]