October  2015, 8(5): 969-988. doi: 10.3934/dcdss.2015.8.969

Multiphase volume-preserving interface motions via localized signed distance vector scheme

1. 

Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan

2. 

Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan

Received  December 2013 Revised  August 2014 Published  July 2015

We develop a signed distance vector approach for approximating volume-preserving mean curvature motions of interfaces separating multiple phases -- a variant of the BMO (Bence-Merriman-Osher) thresholding dynamics. We adopt a variational method employing the idea of a vector-type discrete Morse flow, which allows us to easily treat volume constraint via penalization without having to change the threshold value. Moreover, employing a vector-valued analogue of the signed distance function, the scheme is designed to allow subgrid accuracy on uniform grids without adaptive refinement; thereby, alleviating the well-known BMO time and grid restrictions. Finally, we present numerical tests and examples.
Citation: Rhudaina Z. Mohammad, Karel Švadlenka. Multiphase volume-preserving interface motions via localized signed distance vector scheme. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 969-988. doi: 10.3934/dcdss.2015.8.969
References:
[1]

N. Aguilera, H. W. Alt and L. A. Caffarelli, An optimization problem with volume constraint,, SIAM J. Control and Optimization, 24 (1986), 191.  doi: 10.1137/0324011.  Google Scholar

[2]

H. W. Alt, L. A. Caffarelli and A. Friedman, Variational prrblems with two phases and their free boundaries,, Trans. Amer. Math. Soc., 282 (1984), 431.  doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[3]

J. W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of willmore flow and related geometric evolution equations,, SIAM J. Sci. Comput., 31 (2008), 225.  doi: 10.1137/070700231.  Google Scholar

[4]

G. Barles and C. Georgelin, A simple proof of convergence of an approximation scheme for computing motions by mean curvature,, SIAM J. Numer. Anal., 32 (1995), 484.  doi: 10.1137/0732020.  Google Scholar

[5]

I. C. Dolcetta, S. F. Vita and R. March, Area preserving curve shortening flows: From phase separation to image processing,, Interfaces and Free Boundaries, 4 (2002), 325.  doi: 10.4171/IFB/64.  Google Scholar

[6]

M. Elsey, S. Esedoglu and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions,, J. Comp. Physics, 228 (2009), 8015.  doi: 10.1016/j.jcp.2009.07.020.  Google Scholar

[7]

S. Esedoglu, S. Ruuth and R. Tsai, Diffusion-generated motion using signed distance functions,, J. Comp. Physics, 229 (2010), 1017.  doi: 10.1016/j.jcp.2009.10.002.  Google Scholar

[8]

L. Evans, Convergence of an algorithm for mean curvature motion,, Indiana University Mathematics Journal, 42 (1993), 533.  doi: 10.1512/iumj.1993.42.42024.  Google Scholar

[9]

M. Gage, Curve shortening makes convex curves circular,, Invent. Math., 76 (1984), 357.  doi: 10.1007/BF01388602.  Google Scholar

[10]

E. Ginder, S. Omata and K. Švadlenka, A variational method for diffusion-generated area-preserving interface motion,, Theoretical and Applied Mechanics Japan, 60 (2011), 265.   Google Scholar

[11]

E. Ginder, A Variational Approach to Volume-Controlled Evolutionary Equations,, PhD Thesis, (2013).   Google Scholar

[12]

J. Hass, M. Hutchings and R. Schlafly, The double bubble conjecture,, Electron. Res. Announc. Amer. Math. Soc., 1 (1995), 98.  doi: 10.1090/S1079-6762-95-03001-0.  Google Scholar

[13]

K. Ishii, Mathematical analysis to an approximation scheme for mean curvature flow,, in International Symposium on Computational Science 2011 (eds. S. Omata and K. Svadlenka), 34 (2011), 67.   Google Scholar

[14]

B. Merriman, J. Bence and S. Osher, Motion of multiple junctions: A level set approach,, J. Comp. Physics, 112 (1994), 334.  doi: 10.1006/jcph.1994.1105.  Google Scholar

[15]

R. Z. Mohammad and K. Švadlenka, On a penalization method for an evolutionary free boundary problem with volume constraint,, Adv. Math. Sci. Appl., 24 (2014), 85.   Google Scholar

[16]

E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben,, Math. Ann., 102 (1930), 650.  doi: 10.1007/BF01782368.  Google Scholar

[17]

S. Ruuth and B. Wetton, A simple scheme for volume-preserving motion by mean curvature,, J. Scientific Computing, 19 (2003), 373.  doi: 10.1023/A:1025368328471.  Google Scholar

[18]

K. Švadlenka, E. Ginder and S. Omata, A variational method for multiphase area-preserving interface motions,, J. Comp. Appl. Math, 257 (2014), 157.  doi: 10.1016/j.cam.2013.08.027.  Google Scholar

[19]

P. Tilli, On a constrained variational problem with an arbitrary number of free boundaries,, Interfaces Free Bound, 2 (2000), 201.  doi: 10.4171/IFB/18.  Google Scholar

[20]

H.-K. Zhao, B. Merriman, S. Osher and L. Wang, Capturing the behavior of bubbles and drops using the variational level set approach,, J. Comp. Phys., 143 (1998), 495.  doi: 10.1006/jcph.1997.5810.  Google Scholar

show all references

References:
[1]

N. Aguilera, H. W. Alt and L. A. Caffarelli, An optimization problem with volume constraint,, SIAM J. Control and Optimization, 24 (1986), 191.  doi: 10.1137/0324011.  Google Scholar

[2]

H. W. Alt, L. A. Caffarelli and A. Friedman, Variational prrblems with two phases and their free boundaries,, Trans. Amer. Math. Soc., 282 (1984), 431.  doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[3]

J. W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of willmore flow and related geometric evolution equations,, SIAM J. Sci. Comput., 31 (2008), 225.  doi: 10.1137/070700231.  Google Scholar

[4]

G. Barles and C. Georgelin, A simple proof of convergence of an approximation scheme for computing motions by mean curvature,, SIAM J. Numer. Anal., 32 (1995), 484.  doi: 10.1137/0732020.  Google Scholar

[5]

I. C. Dolcetta, S. F. Vita and R. March, Area preserving curve shortening flows: From phase separation to image processing,, Interfaces and Free Boundaries, 4 (2002), 325.  doi: 10.4171/IFB/64.  Google Scholar

[6]

M. Elsey, S. Esedoglu and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions,, J. Comp. Physics, 228 (2009), 8015.  doi: 10.1016/j.jcp.2009.07.020.  Google Scholar

[7]

S. Esedoglu, S. Ruuth and R. Tsai, Diffusion-generated motion using signed distance functions,, J. Comp. Physics, 229 (2010), 1017.  doi: 10.1016/j.jcp.2009.10.002.  Google Scholar

[8]

L. Evans, Convergence of an algorithm for mean curvature motion,, Indiana University Mathematics Journal, 42 (1993), 533.  doi: 10.1512/iumj.1993.42.42024.  Google Scholar

[9]

M. Gage, Curve shortening makes convex curves circular,, Invent. Math., 76 (1984), 357.  doi: 10.1007/BF01388602.  Google Scholar

[10]

E. Ginder, S. Omata and K. Švadlenka, A variational method for diffusion-generated area-preserving interface motion,, Theoretical and Applied Mechanics Japan, 60 (2011), 265.   Google Scholar

[11]

E. Ginder, A Variational Approach to Volume-Controlled Evolutionary Equations,, PhD Thesis, (2013).   Google Scholar

[12]

J. Hass, M. Hutchings and R. Schlafly, The double bubble conjecture,, Electron. Res. Announc. Amer. Math. Soc., 1 (1995), 98.  doi: 10.1090/S1079-6762-95-03001-0.  Google Scholar

[13]

K. Ishii, Mathematical analysis to an approximation scheme for mean curvature flow,, in International Symposium on Computational Science 2011 (eds. S. Omata and K. Svadlenka), 34 (2011), 67.   Google Scholar

[14]

B. Merriman, J. Bence and S. Osher, Motion of multiple junctions: A level set approach,, J. Comp. Physics, 112 (1994), 334.  doi: 10.1006/jcph.1994.1105.  Google Scholar

[15]

R. Z. Mohammad and K. Švadlenka, On a penalization method for an evolutionary free boundary problem with volume constraint,, Adv. Math. Sci. Appl., 24 (2014), 85.   Google Scholar

[16]

E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben,, Math. Ann., 102 (1930), 650.  doi: 10.1007/BF01782368.  Google Scholar

[17]

S. Ruuth and B. Wetton, A simple scheme for volume-preserving motion by mean curvature,, J. Scientific Computing, 19 (2003), 373.  doi: 10.1023/A:1025368328471.  Google Scholar

[18]

K. Švadlenka, E. Ginder and S. Omata, A variational method for multiphase area-preserving interface motions,, J. Comp. Appl. Math, 257 (2014), 157.  doi: 10.1016/j.cam.2013.08.027.  Google Scholar

[19]

P. Tilli, On a constrained variational problem with an arbitrary number of free boundaries,, Interfaces Free Bound, 2 (2000), 201.  doi: 10.4171/IFB/18.  Google Scholar

[20]

H.-K. Zhao, B. Merriman, S. Osher and L. Wang, Capturing the behavior of bubbles and drops using the variational level set approach,, J. Comp. Phys., 143 (1998), 495.  doi: 10.1006/jcph.1997.5810.  Google Scholar

[1]

Mohammad Safdari. The regularity of some vector-valued variational inequalities with gradient constraints. Communications on Pure & Applied Analysis, 2018, 17 (2) : 413-428. doi: 10.3934/cpaa.2018023

[2]

Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018174

[3]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[4]

Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure & Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311

[5]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[6]

Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020086

[7]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[8]

Christiane Pöschl, Jan Modersitzki, Otmar Scherzer. A variational setting for volume constrained image registration. Inverse Problems & Imaging, 2010, 4 (3) : 505-522. doi: 10.3934/ipi.2010.4.505

[9]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[10]

Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020153

[11]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[12]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

[13]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[14]

Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On well-posedness of vector-valued fractional differential-difference equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2679-2708. doi: 10.3934/dcds.2019112

[15]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[16]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[17]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[18]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[19]

Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure & Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307

[20]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]