October  2015, 8(5): 989-997. doi: 10.3934/dcdss.2015.8.989

Behavior of radially symmetric solutions for a free boundary problem related to cell motility

1. 

Meiji Institute of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525

Received  December 2013 Revised  June 2014 Published  July 2015

We consider a free boundary problem related to cell motility. In the previous work, the author [5] replaced the boundary condition, in the original problem, with a simple boundary condition and studied the behavior of radially symmetric solutions for the modified problem. In this paper, we consider the original mathematical model and show that the behavior of solutions for the model is similar to the one of solutions for the modified model under the certain condition.
Citation: Harunori Monobe. Behavior of radially symmetric solutions for a free boundary problem related to cell motility. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 989-997. doi: 10.3934/dcdss.2015.8.989
References:
[1]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World. Scientific, (1996).  doi: 10.1142/3302.  Google Scholar

[2]

A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod,, Bio. J., 97 (2009), 1853.   Google Scholar

[3]

A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models,, Biophys J., 101 (2011), 545.   Google Scholar

[4]

A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell,, J. Stat. Phys., 110 (2003), 1169.   Google Scholar

[5]

H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion,, Differential and Integral Equations, 25 (2012), 93.   Google Scholar

[6]

H. Monobe and N. Hirokazu, Multiple existence of traveling waves of a free boundary problem describing cell motility,, Discrete Contin. Dyn. Syst., 19 (2014), 789.  doi: 10.3934/dcdsb.2014.19.789.  Google Scholar

[7]

T. Umeda, A chemo-mechanical model for amoeboid cell movement,, (in preparation)., ().   Google Scholar

show all references

References:
[1]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World. Scientific, (1996).  doi: 10.1142/3302.  Google Scholar

[2]

A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod,, Bio. J., 97 (2009), 1853.   Google Scholar

[3]

A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models,, Biophys J., 101 (2011), 545.   Google Scholar

[4]

A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell,, J. Stat. Phys., 110 (2003), 1169.   Google Scholar

[5]

H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion,, Differential and Integral Equations, 25 (2012), 93.   Google Scholar

[6]

H. Monobe and N. Hirokazu, Multiple existence of traveling waves of a free boundary problem describing cell motility,, Discrete Contin. Dyn. Syst., 19 (2014), 789.  doi: 10.3934/dcdsb.2014.19.789.  Google Scholar

[7]

T. Umeda, A chemo-mechanical model for amoeboid cell movement,, (in preparation)., ().   Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[13]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[14]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[15]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[16]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[17]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[18]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[19]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[20]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]