February  2016, 9(1): 1-13. doi: 10.3934/dcdss.2016.9.1

Quantum hydrodynamics with nonlinear interactions

1. 

Gran Sasso Science Institute, viale F. Crispi, 7, 67100 L'Aquila, Italy

2. 

DISIM - Università de L'Aquila, via Vetoio, 67010 Coppito (AQ), Italy

Received  September 2014 Revised  February 2015 Published  December 2015

In this paper we prove the global existence of large amplitude finite energy solutions for a system describing Quantum Fluids with nonlinear nonlocal interaction terms. The system may also (but not necessarily) include dissipation terms which do not provide any help to get the global existence. The method is based on the polar factorization of the wave function (which somehow generalizes the WKB method), the construction of approximate solutions via a fractional step argument and the deduction of Strichartz type estimates for the approximate solutions. Finally local smoothing and a compactness argument of Lions Aubin type allow to show the convergence.
Citation: Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1
References:
[1]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics,, Comm. Math. Phys., 287 (2009), 657.  doi: 10.1007/s00220-008-0632-0.  Google Scholar

[2]

P. Antonelli and P. Marcati, The Quantum Hydrodynamics system in two space dimensions,, Archive for Rational Mechanics and Analysis, 203 (2012), 499.  doi: 10.1007/s00205-011-0454-7.  Google Scholar

[3]

P. Antonelli, R. Carles and C. Sparber, On nonlinear Schrödinger type equations with nonlinear damping,, Int. Math. Res. Notices, 2015 (2015), 740.  doi: 10.1093/imrn/rnt217.  Google Scholar

[4]

G. Baccarani and M. Wordeman, An investignation of steady state velocity overshoot effects in Si and GaAs devices,, Solid State Electron., ED-29 (1982), 970.   Google Scholar

[5]

N. Berloff, Quantum vortices, travelling coherent structures and superfluid turbulence,, in Stationary and Time Dependent Gross-Pitaevskii Equations (eds. A. Farina and J.-C. Saut), (2006).   Google Scholar

[6]

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued function,, Comm. Pure Appl. Math., 44 (1991), 375.  doi: 10.1002/cpa.3160440402.  Google Scholar

[7]

T. Cazenave, Semilinear Schödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[8]

P. Constantin and J.-C. Saut, Local smoothing properties of dispsersive equations,, J. Amer. Math. Soc., 1 (1988), 413.  doi: 10.1090/S0894-0347-1988-0928265-0.  Google Scholar

[9]

F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[10]

D. Donatelli, E. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems,, Comm. PDEs, 40 (2015), 1314.  doi: 10.1080/03605302.2014.972517.  Google Scholar

[11]

H. Federer and W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives are $p^{th}$ power summable,, Indiana Univ. Math. J., 22 (1972), 139.  doi: 10.1512/iumj.1973.22.22013.  Google Scholar

[12]

R. Feynman, Superfluidity and Superconductivity,, Rev. Mod. Phys., 29 (1957).  doi: 10.1103/RevModPhys.29.205.  Google Scholar

[13]

C. Gardner, The quantum hydrodynamic model for semincoductor devices,, SIAM J. Appl. Math., 54 (1994), 409.  doi: 10.1137/S0036139992240425.  Google Scholar

[14]

J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equations rivisited,, Ann. Inst. H. Poincaré Anal. Non Lin., 2 (1985), 309.   Google Scholar

[15]

A. Griffin, T. Nikuni and E. Zaremba, Bose-Condensed Gases at Finite Temperatures,, Cambridge University Press, (2009).  doi: 10.1017/CBO9780511575150.  Google Scholar

[16]

A. Jüngel, Dissipative quantum fluid models,, Riv. Mat. Univ. Parma, 3 (2012), 217.   Google Scholar

[17]

A. Jüngel, M. Mariani and D. Rial, Local existence of solutions to the transient quantum hydrodynamics equations,, Math. Models Methods Appl. Sci., 12 (2002), 485.  doi: 10.1142/S0218202502001751.  Google Scholar

[18]

M. Keel and T. Tao, Enpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[19]

M. Kostin, On the Schrödinger-Langevin equation,, J. Chem. Phys., 57 (1972), 3589.   Google Scholar

[20]

L. Landau, Theory of the superfluidity of helium II,, Phys. Rev., 60 (1941).   Google Scholar

[21]

H. L. Li and P. Marcati, Existence and asymptotic behavior of multi-dimensional quanntum hydrodynamic model for semiconductors,, Comm. Math. Phys., 245 (2004), 215.  doi: 10.1007/s00220-003-1001-7.  Google Scholar

[22]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations,, Springer-Verlag, (2009).   Google Scholar

[23]

E. Madelung, Quantuentheorie in hydrodynamischer form,, Z. Physik, 40 (1927).   Google Scholar

[24]

P. Marcati, P. Markowich and R. Natalini, Mathematical Problems in Semiconductor Physics,, Pitman Res. Notices in Math. Series, (1996).   Google Scholar

[25]

P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer-Verlag, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[26]

J. M. Rakotoson and R. Temam, An optimal compactness theorem and application to elliptic-parabolic systems,, Appl. Math. Letters, 14 (2001), 303.  doi: 10.1016/S0893-9659(00)00153-1.  Google Scholar

[27]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis,, CBMS Regional Conference Series in Mathematics, (2006).   Google Scholar

[28]

M. Tsubota, Quantized vortices in superfluid helium and Bose-Einstein condensates,, J. Phys.: Conf. Ser., 31 (2006), 88.  doi: 10.1088/1742-6596/31/1/014.  Google Scholar

[29]

E. Zaremba, T. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperatures,, J. Low Temp. Phys., 116 (1999), 277.   Google Scholar

show all references

References:
[1]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics,, Comm. Math. Phys., 287 (2009), 657.  doi: 10.1007/s00220-008-0632-0.  Google Scholar

[2]

P. Antonelli and P. Marcati, The Quantum Hydrodynamics system in two space dimensions,, Archive for Rational Mechanics and Analysis, 203 (2012), 499.  doi: 10.1007/s00205-011-0454-7.  Google Scholar

[3]

P. Antonelli, R. Carles and C. Sparber, On nonlinear Schrödinger type equations with nonlinear damping,, Int. Math. Res. Notices, 2015 (2015), 740.  doi: 10.1093/imrn/rnt217.  Google Scholar

[4]

G. Baccarani and M. Wordeman, An investignation of steady state velocity overshoot effects in Si and GaAs devices,, Solid State Electron., ED-29 (1982), 970.   Google Scholar

[5]

N. Berloff, Quantum vortices, travelling coherent structures and superfluid turbulence,, in Stationary and Time Dependent Gross-Pitaevskii Equations (eds. A. Farina and J.-C. Saut), (2006).   Google Scholar

[6]

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued function,, Comm. Pure Appl. Math., 44 (1991), 375.  doi: 10.1002/cpa.3160440402.  Google Scholar

[7]

T. Cazenave, Semilinear Schödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[8]

P. Constantin and J.-C. Saut, Local smoothing properties of dispsersive equations,, J. Amer. Math. Soc., 1 (1988), 413.  doi: 10.1090/S0894-0347-1988-0928265-0.  Google Scholar

[9]

F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[10]

D. Donatelli, E. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems,, Comm. PDEs, 40 (2015), 1314.  doi: 10.1080/03605302.2014.972517.  Google Scholar

[11]

H. Federer and W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives are $p^{th}$ power summable,, Indiana Univ. Math. J., 22 (1972), 139.  doi: 10.1512/iumj.1973.22.22013.  Google Scholar

[12]

R. Feynman, Superfluidity and Superconductivity,, Rev. Mod. Phys., 29 (1957).  doi: 10.1103/RevModPhys.29.205.  Google Scholar

[13]

C. Gardner, The quantum hydrodynamic model for semincoductor devices,, SIAM J. Appl. Math., 54 (1994), 409.  doi: 10.1137/S0036139992240425.  Google Scholar

[14]

J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equations rivisited,, Ann. Inst. H. Poincaré Anal. Non Lin., 2 (1985), 309.   Google Scholar

[15]

A. Griffin, T. Nikuni and E. Zaremba, Bose-Condensed Gases at Finite Temperatures,, Cambridge University Press, (2009).  doi: 10.1017/CBO9780511575150.  Google Scholar

[16]

A. Jüngel, Dissipative quantum fluid models,, Riv. Mat. Univ. Parma, 3 (2012), 217.   Google Scholar

[17]

A. Jüngel, M. Mariani and D. Rial, Local existence of solutions to the transient quantum hydrodynamics equations,, Math. Models Methods Appl. Sci., 12 (2002), 485.  doi: 10.1142/S0218202502001751.  Google Scholar

[18]

M. Keel and T. Tao, Enpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[19]

M. Kostin, On the Schrödinger-Langevin equation,, J. Chem. Phys., 57 (1972), 3589.   Google Scholar

[20]

L. Landau, Theory of the superfluidity of helium II,, Phys. Rev., 60 (1941).   Google Scholar

[21]

H. L. Li and P. Marcati, Existence and asymptotic behavior of multi-dimensional quanntum hydrodynamic model for semiconductors,, Comm. Math. Phys., 245 (2004), 215.  doi: 10.1007/s00220-003-1001-7.  Google Scholar

[22]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations,, Springer-Verlag, (2009).   Google Scholar

[23]

E. Madelung, Quantuentheorie in hydrodynamischer form,, Z. Physik, 40 (1927).   Google Scholar

[24]

P. Marcati, P. Markowich and R. Natalini, Mathematical Problems in Semiconductor Physics,, Pitman Res. Notices in Math. Series, (1996).   Google Scholar

[25]

P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer-Verlag, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[26]

J. M. Rakotoson and R. Temam, An optimal compactness theorem and application to elliptic-parabolic systems,, Appl. Math. Letters, 14 (2001), 303.  doi: 10.1016/S0893-9659(00)00153-1.  Google Scholar

[27]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis,, CBMS Regional Conference Series in Mathematics, (2006).   Google Scholar

[28]

M. Tsubota, Quantized vortices in superfluid helium and Bose-Einstein condensates,, J. Phys.: Conf. Ser., 31 (2006), 88.  doi: 10.1088/1742-6596/31/1/014.  Google Scholar

[29]

E. Zaremba, T. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperatures,, J. Low Temp. Phys., 116 (1999), 277.   Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-riemannian einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[12]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[17]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[18]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (73)
  • HTML views (1)
  • Cited by (1)

Other articles
by authors

[Back to Top]