February  2016, 9(1): 15-32. doi: 10.3934/dcdss.2016.9.15

The path decomposition technique for systems of hyperbolic conservation laws

1. 

Department of Engineering Science, Osaka Electro-Communication University, 18-8 Hatucho, Neyagawa, Osaka 572-8530, Japan

2. 

Department of Mathematics and Computer Science, University of Ferrara, Via Machiavelli 30, 44121 Ferrara, Italy

Received  September 2014 Revised  February 2015 Published  December 2015

We are concerned with the problem of the global (in time) existence of weak solutions to hyperbolic systems of conservation laws, in one spatial dimension. First, we provide a survey of the different facets of a technique that has been used in several papers in the last years: the path decomposition. Then, we report on two very recent results that have been achieved by means of suitable applications of this technique. The first one concerns a system of three equations arising in the dynamic modeling of phase transitions, the second one is the famous Euler system for nonisentropic fluid flow. In both cases, the results concern classes of initial data with possibly large total variation.
Citation: Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15
References:
[1]

D. Amadori and A. Corli, On a model of multiphase flow,, SIAM J. Math. Anal., 40 (2008), 134.  doi: 10.1137/07069211X.  Google Scholar

[2]

D. Amadori and A. Corli, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow,, Nonlinear Anal., 72 (2010), 2527.  doi: 10.1016/j.na.2009.10.048.  Google Scholar

[3]

D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1.  doi: 10.1017/S0308210500000767.  Google Scholar

[4]

F. Asakura, Decay of solutions for the equations of isothermal gas dynamics,, Japan J. Indust. Appl. Math., 10 (1993), 133.  doi: 10.1007/BF03167207.  Google Scholar

[5]

F. Asakura, Wave-front tracking for the equations of isentropic gas dynamics,, Quart. Appl. Math., 63 (2005), 20.  doi: 10.1090/S0033-569X-04-00935-8.  Google Scholar

[6]

F. Asakura, Wave-front tracking for the equations of non-isentropic gas dynamics-basic lemmas,, Acta Math. Vietnam., 38 (2013), 487.  doi: 10.1007/s40306-013-0030-3.  Google Scholar

[7]

F. Asakura and A. Corli, Global existence of solutions by path decomposition for a model of multiphase flow,, Quart. Appl. Math., 71 (2013), 135.  doi: 10.1090/S0033-569X-2012-01318-4.  Google Scholar

[8]

F. Asakura and A. Corli, Wave-front tracking for the equations of non-isentropic gas dynamics,, Ann. Mat. Pura Appl., 194 (2015), 581.  doi: 10.1007/s10231-013-0390-2.  Google Scholar

[9]

A. Bressan, Global solutions of systems of conservation laws by wave-front tracking,, J. Math. Anal. Appl., 170 (1992), 414.  doi: 10.1016/0022-247X(92)90027-B.  Google Scholar

[10]

A. Bressan, The unique limit of the Glimm scheme,, Arch. Rational Mech. Anal., 130 (1995), 205.  doi: 10.1007/BF00392027.  Google Scholar

[11]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford University Press, (2000).   Google Scholar

[12]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Third edition, (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[13]

R. J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws,, J. Differential Equations, 20 (1976), 187.  doi: 10.1016/0022-0396(76)90102-9.  Google Scholar

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697.  doi: 10.1002/cpa.3160180408.  Google Scholar

[15]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,, Mat. Sb. (N.S.), 47 (1959), 271.   Google Scholar

[16]

P. Lax, Shock waves and entropy,, in Contributions to Nonlinear Functional Analysis (Proc. Sympos., (1971), 603.   Google Scholar

[17]

P. D. Lax, Hyperbolic systems of conservation laws. II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[18]

T. P. Liu, The deterministic version of the Glimm scheme,, Comm. Math. Phys., 57 (1977), 135.  doi: 10.1007/BF01625772.  Google Scholar

[19]

T. P. Liu, Initial-boundary value problems for gas dynamics,, Arch. Rational Mech. Anal., 64 (1977), 137.  doi: 10.1007/BF00280095.  Google Scholar

[20]

T. P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics,, Indiana Univ. Math. J., 26 (1977), 147.  doi: 10.1512/iumj.1977.26.26011.  Google Scholar

[21]

T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system,, Proc. Japan Acad., 44 (1968), 642.  doi: 10.3792/pja/1195521083.  Google Scholar

[22]

T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws,, Comm. Pure Appl. Math., 26 (1973), 183.  doi: 10.1002/cpa.3160260205.  Google Scholar

[23]

N. H. Risebro, A front-tracking alternative to the random choice method,, Proc. Amer. Math. Soc., 117 (1993), 1125.  doi: 10.1090/S0002-9939-1993-1120511-X.  Google Scholar

[24]

J. B. Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics,, J. Differential Equations, 41 (1981), 96.  doi: 10.1016/0022-0396(81)90055-3.  Google Scholar

[25]

B. Temple and R. Young, The large time stability of sound waves,, Comm. Math. Phys., 179 (1996), 417.  doi: 10.1007/BF02102596.  Google Scholar

[26]

R. Young, Sup-norm stability for Glimm's scheme,, Comm. Pure Appl. Math., 46 (1993), 903.  doi: 10.1002/cpa.3160460605.  Google Scholar

show all references

References:
[1]

D. Amadori and A. Corli, On a model of multiphase flow,, SIAM J. Math. Anal., 40 (2008), 134.  doi: 10.1137/07069211X.  Google Scholar

[2]

D. Amadori and A. Corli, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow,, Nonlinear Anal., 72 (2010), 2527.  doi: 10.1016/j.na.2009.10.048.  Google Scholar

[3]

D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1.  doi: 10.1017/S0308210500000767.  Google Scholar

[4]

F. Asakura, Decay of solutions for the equations of isothermal gas dynamics,, Japan J. Indust. Appl. Math., 10 (1993), 133.  doi: 10.1007/BF03167207.  Google Scholar

[5]

F. Asakura, Wave-front tracking for the equations of isentropic gas dynamics,, Quart. Appl. Math., 63 (2005), 20.  doi: 10.1090/S0033-569X-04-00935-8.  Google Scholar

[6]

F. Asakura, Wave-front tracking for the equations of non-isentropic gas dynamics-basic lemmas,, Acta Math. Vietnam., 38 (2013), 487.  doi: 10.1007/s40306-013-0030-3.  Google Scholar

[7]

F. Asakura and A. Corli, Global existence of solutions by path decomposition for a model of multiphase flow,, Quart. Appl. Math., 71 (2013), 135.  doi: 10.1090/S0033-569X-2012-01318-4.  Google Scholar

[8]

F. Asakura and A. Corli, Wave-front tracking for the equations of non-isentropic gas dynamics,, Ann. Mat. Pura Appl., 194 (2015), 581.  doi: 10.1007/s10231-013-0390-2.  Google Scholar

[9]

A. Bressan, Global solutions of systems of conservation laws by wave-front tracking,, J. Math. Anal. Appl., 170 (1992), 414.  doi: 10.1016/0022-247X(92)90027-B.  Google Scholar

[10]

A. Bressan, The unique limit of the Glimm scheme,, Arch. Rational Mech. Anal., 130 (1995), 205.  doi: 10.1007/BF00392027.  Google Scholar

[11]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford University Press, (2000).   Google Scholar

[12]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Third edition, (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[13]

R. J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws,, J. Differential Equations, 20 (1976), 187.  doi: 10.1016/0022-0396(76)90102-9.  Google Scholar

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697.  doi: 10.1002/cpa.3160180408.  Google Scholar

[15]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,, Mat. Sb. (N.S.), 47 (1959), 271.   Google Scholar

[16]

P. Lax, Shock waves and entropy,, in Contributions to Nonlinear Functional Analysis (Proc. Sympos., (1971), 603.   Google Scholar

[17]

P. D. Lax, Hyperbolic systems of conservation laws. II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[18]

T. P. Liu, The deterministic version of the Glimm scheme,, Comm. Math. Phys., 57 (1977), 135.  doi: 10.1007/BF01625772.  Google Scholar

[19]

T. P. Liu, Initial-boundary value problems for gas dynamics,, Arch. Rational Mech. Anal., 64 (1977), 137.  doi: 10.1007/BF00280095.  Google Scholar

[20]

T. P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics,, Indiana Univ. Math. J., 26 (1977), 147.  doi: 10.1512/iumj.1977.26.26011.  Google Scholar

[21]

T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system,, Proc. Japan Acad., 44 (1968), 642.  doi: 10.3792/pja/1195521083.  Google Scholar

[22]

T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws,, Comm. Pure Appl. Math., 26 (1973), 183.  doi: 10.1002/cpa.3160260205.  Google Scholar

[23]

N. H. Risebro, A front-tracking alternative to the random choice method,, Proc. Amer. Math. Soc., 117 (1993), 1125.  doi: 10.1090/S0002-9939-1993-1120511-X.  Google Scholar

[24]

J. B. Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics,, J. Differential Equations, 41 (1981), 96.  doi: 10.1016/0022-0396(81)90055-3.  Google Scholar

[25]

B. Temple and R. Young, The large time stability of sound waves,, Comm. Math. Phys., 179 (1996), 417.  doi: 10.1007/BF02102596.  Google Scholar

[26]

R. Young, Sup-norm stability for Glimm's scheme,, Comm. Pure Appl. Math., 46 (1993), 903.  doi: 10.1002/cpa.3160460605.  Google Scholar

[1]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[2]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[3]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[4]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[5]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[6]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[7]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[8]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[9]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[10]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[11]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[12]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[13]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[14]

Paolo Baiti, Helge Kristian Jenssen. Blowup in $\mathbf{L^{\infty}}$ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 837-853. doi: 10.3934/dcds.2001.7.837

[15]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[16]

Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739

[17]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[18]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[19]

Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec. A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks & Heterogeneous Media, 2009, 4 (2) : 249-266. doi: 10.3934/nhm.2009.4.249

[20]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]