-
Previous Article
Stabilized Galerkin for transient advection of differential forms
- DCDS-S Home
- This Issue
-
Next Article
Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains
On weak solutions to a diffuse interface model of a binary mixture of compressible fluids
1. | Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1 |
References:
[1] |
T. Blesgen, A generalization of the Navier-Stokes equations to two-phase flow, J. Phys. D Appl. Phys., 32 (1999), 1119-1123.
doi: 10.1088/0022-3727/32/10/307. |
[2] |
E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ., 11 (2014), 493-519.
doi: 10.1142/S0219891614500143. |
[3] |
E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Communications on Pure and Applied Mathematics, 68 (2015), 1157-1190.
doi: 10.1002/cpa.21537. |
[4] |
E. Chiodaroli, E. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas, Annal. Inst. Poincaré, Anal. Nonlinear., 32 (2015), 225-243.
doi: 10.1016/j.anihpc.2013.11.005. |
[5] |
C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.
doi: 10.1007/s00205-008-0201-x. |
[6] |
C. De Lellis and L. Székelyhidi, Jr., The $h$-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.), 49 (2012), 347-375.
doi: 10.1090/S0273-0979-2012-01376-9. |
[7] |
R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$-estimates for parabolic boundary value problems with inhomogenous data, Math. Z., 257 (2007), 193-224.
doi: 10.1007/s00209-007-0120-9. |
[8] |
D. Donatelli, E. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Commun. Partial Differential Equations, 40 (2015), 1314-1335.
doi: 10.1080/03605302.2014.972517. |
[9] |
J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2617-2654.
doi: 10.1098/rspa.1998.0273. |
[10] |
V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.
doi: 10.1007/BF02921318. |
[11] |
A. Shnirelman, Weak solutions of incompressible Euler equations, in Handbook of Mathematical Fluid Dynamics, II, North-Holland, Amsterdam, 2003, 87-116.
doi: 10.1016/S1874-5792(03)80005-8. |
[12] |
L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Anal. and Mech., Heriot-Watt Sympos., Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979, 136-212. |
show all references
References:
[1] |
T. Blesgen, A generalization of the Navier-Stokes equations to two-phase flow, J. Phys. D Appl. Phys., 32 (1999), 1119-1123.
doi: 10.1088/0022-3727/32/10/307. |
[2] |
E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ., 11 (2014), 493-519.
doi: 10.1142/S0219891614500143. |
[3] |
E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Communications on Pure and Applied Mathematics, 68 (2015), 1157-1190.
doi: 10.1002/cpa.21537. |
[4] |
E. Chiodaroli, E. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas, Annal. Inst. Poincaré, Anal. Nonlinear., 32 (2015), 225-243.
doi: 10.1016/j.anihpc.2013.11.005. |
[5] |
C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.
doi: 10.1007/s00205-008-0201-x. |
[6] |
C. De Lellis and L. Székelyhidi, Jr., The $h$-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.), 49 (2012), 347-375.
doi: 10.1090/S0273-0979-2012-01376-9. |
[7] |
R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$-estimates for parabolic boundary value problems with inhomogenous data, Math. Z., 257 (2007), 193-224.
doi: 10.1007/s00209-007-0120-9. |
[8] |
D. Donatelli, E. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Commun. Partial Differential Equations, 40 (2015), 1314-1335.
doi: 10.1080/03605302.2014.972517. |
[9] |
J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2617-2654.
doi: 10.1098/rspa.1998.0273. |
[10] |
V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.
doi: 10.1007/BF02921318. |
[11] |
A. Shnirelman, Weak solutions of incompressible Euler equations, in Handbook of Mathematical Fluid Dynamics, II, North-Holland, Amsterdam, 2003, 87-116.
doi: 10.1016/S1874-5792(03)80005-8. |
[12] |
L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Anal. and Mech., Heriot-Watt Sympos., Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979, 136-212. |
[1] |
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 |
[2] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[3] |
Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824 |
[4] |
Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 |
[5] |
John W. Barrett, Harald Garcke, Robert Nürnberg. On sharp interface limits of Allen--Cahn/Cahn--Hilliard variational inequalities. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 1-14. doi: 10.3934/dcdss.2008.1.1 |
[6] |
Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675 |
[7] |
Andrea Giorgini, Roger Temam. Attractors for the Navier-Stokes-Cahn-Hilliard system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2249-2274. doi: 10.3934/dcdss.2022118 |
[8] |
Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497 |
[9] |
Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117 |
[10] |
Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024 |
[11] |
Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099 |
[12] |
Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301 |
[13] |
T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067 |
[14] |
Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31 |
[15] |
Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1545-1557. doi: 10.3934/cpaa.2021032 |
[16] |
Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012 |
[17] |
Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049 |
[18] |
Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353 |
[19] |
Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423 |
[20] |
Mathias Wilke. $L_p$-theory for a Cahn-Hilliard-Gurtin system. Evolution Equations and Control Theory, 2012, 1 (2) : 393-429. doi: 10.3934/eect.2012.1.393 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]