February  2016, 9(1): xi-xvii. doi: 10.3934/dcdss.2016.9.1xi

The research of Alberto Valli

1. 

Dipartimento di Matematica, Universita degli Studi di Trento, Via Sommarive, 14, I-38050 POVO

2. 

Department of Mathematics, Pisa University, Via F.Buonarroti, 1, 56127-Pisa

3. 

EPFL, SB, SMA, MATHICSE, CMCS, Av. Piccard, Station 8, CH-1015 Lausanne, Switzerland

Published  December 2015

The scientific activity of Professor Alberto Valli has been mainly devoted to three different subjects: theoretical analysis of partial differential equations in fluid dynamics; domain decomposition methods; numerical approximation of problems arising in low-frequency electromagnetism.

For more information please click the “Full Text” above.
Citation: Ana Alonso Rodríguez, Hugo Beirão da Veiga, Alfio Quarteroni. The research of Alberto Valli. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : xi-xvii. doi: 10.3934/dcdss.2016.9.1xi
References:
[1]

L. Carbone and A. Valli, Filtrazione di un fluido in un mezzo non omogeneo tridimensionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 61 (1976), 161. Google Scholar

[2]

A. Valli, L'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 61 (1976), 1. Google Scholar

[3]

L. Carbone and A. Valli, Free boundary enclosure in a three-dimensional filtration problem,, Appl. Math. Optim., 4 (1977), 1. doi: 10.1007/BF01442128. Google Scholar

[4]

A. Valli, Soluzioni classiche dell'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile,, Ricerche Mat., 26 (1977), 301. Google Scholar

[5]

L. Carbone and A. Valli, Asymptotic behaviour of the free boundary in a filtration problem,, Boll. Un. Mat. Ital. B (5), 15 (1978), 217. Google Scholar

[6]

L. Carbone and A. Valli, Filtration through a porous non-homogeneous medium with variable cross-section,, J. Analyse Math., 33 (1978), 191. doi: 10.1007/BF02790173. Google Scholar

[7]

H. Beirão da Veiga and A. Valli, On the motion of a non-homogeneous ideal incompressible fluid in an external force field,, Rend. Sem. Mat. Univ. Padova, 59 (1978), 117. Google Scholar

[8]

H. Beirão da Veiga and A. Valli, Existence of $C^\infty$ solutions of the Euler equations for non-homogeneous fluids,, Comm. Partial Differential Equations, 5 (1980), 95. doi: 10.1080/03605308008820134. Google Scholar

[9]

H. Beirão da Veiga and A. Valli, On the Euler equations for non-homogeneous fluids (I),, Rend. Sem. Mat. Univ. Padova, 63 (1980), 151. Google Scholar

[10]

H. Beirão da Veiga and A. Valli, On the Euler equations for non-homogeneous fluids (II),, J. Math. Anal. Appl., 73 (1980), 338. doi: 10.1016/0022-247X(80)90282-6. Google Scholar

[11]

A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds,, Boll. Un. Mat. Ital. C (5), 18 (1981), 317. Google Scholar

[12]

H. Beirão da Veiga, R. Serapioni and A. Valli, On the motion of non-homogeneous fluids in the presence of diffusion,, J. Math. Anal. Appl., 85 (1982), 179. doi: 10.1016/0022-247X(82)90033-6. Google Scholar

[13]

A. Valli, A correction to the paper: "An existence theorem for compressible viscous fluids'',, Ann. Mat. Pura Appl. (4), 132 (1982), 399. doi: 10.1007/BF01760990. Google Scholar

[14]

A. Valli, An existence theorem for compressible viscous fluids,, Ann. Mat. Pura Appl. (4), 130 (1982), 197. doi: 10.1007/BF01761495. Google Scholar

[15]

P. Secchi and A. Valli, A free boundary problem for compressible viscous fluids,, J. Reine Angew. Math., 341 (1983), 1. doi: 10.1515/crll.1983.341.1. Google Scholar

[16]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10 (1983), 607. Google Scholar

[17]

A. Valli, Free boundary problems for compressible viscous fluids,, in Fluid Dynamics (Varenna, (1982), 175. doi: 10.1007/BFb0072331. Google Scholar

[18]

P. Marcati and A. Valli, Almost-periodic solutions to the Navier-Stokes equations for compressible fluids,, Boll. Un. Mat. Ital. B (6), 4 (1985), 969. Google Scholar

[19]

A. Valli, Global existence theorems for compressible viscous fluids,, in Nonlinear Variational Problems (Isola d'Elba, (1983), 120. Google Scholar

[20]

A. Valli, On the integral representation of the solution to the Stokes system,, Rend. Sem. Mat. Univ. Padova, 74 (1985), 85. Google Scholar

[21]

A. Valli, Navier-Stokes equations for compressible fluids: Global estimates and periodic solutions,, in Nonlinear Functional Analysis and its Applications, (1983), 467. Google Scholar

[22]

A. Valli, Qualitative properties of the solutions to the Navier-Stokes equations for compressible fluids,, in Equadiff 6 (Brno, (1985), 259. doi: 10.1007/BFb0076079. Google Scholar

[23]

A. Valli, Stationary solutions to the Navier-Stokes equations for compressible fluids,, in BAIL IV (Novosibirsk, (1986), 417. Google Scholar

[24]

A. Valli and W. Zajączkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case,, Comm. Math. Phys., 103 (1986), 259. doi: 10.1007/BF01206939. Google Scholar

[25]

A. Valli, On the existence of stationary solutions to compressible Navier-Stokes equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 99. Google Scholar

[26]

I. Straškraba and A. Valli, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations,, Manuscripta Math., 62 (1988), 401. doi: 10.1007/BF01357718. Google Scholar

[27]

A. Valli and W. Zajączkowski, About the motion of non-homogeneous ideal incompressible fluids,, Nonlinear Anal., 12 (1988), 43. doi: 10.1016/0362-546X(88)90011-9. Google Scholar

[28]

A. Valli, An existence theorem for non-homogeneous inviscid incompressible fluids,, in Differential Equations (Xanthi, (1987), 691. Google Scholar

[29]

V. Lovicar, I. Straškraba and A. Valli, On bounded solutions of one-dimensional compressible Navier-Stokes equations,, Rend. Sem. Mat. Univ. Padova, 83 (1990), 81. Google Scholar

[30]

A. Quarteroni and A. Valli, Domain decomposition for a generalized Stokes problem,, in, (1988), 59. Google Scholar

[31]

A. Valli, On the one-dimensional Navier-Stokes equations for compressible fluids,, in The Navier-Stokes Equations (Oberwolfach, (1988), 173. doi: 10.1007/BFb0086068. Google Scholar

[32]

A. Quarteroni, G. Sacchi Landriani and A. Valli, Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements,, Numer. Math., 59 (1991), 831. doi: 10.1007/BF01385813. Google Scholar

[33]

A. Quarteroni and A. Valli, Theory and applications of Steklov-Poincaré for boundary value problems: the heterogeneous operator case,, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, (1990), 58. Google Scholar

[34]

A. Quarteroni and A. Valli, Theory and applications of Steklov-Poincaré operators for boundary value problems,, in Applied and Industrial Mathematics (Venice, (1989), 179. Google Scholar

[35]

C. Carlenzoli, A. Quarteroni and A. Valli, Spectral domain decomposition methods for compressible Navier-Stokes equations,, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, (1991), 441. Google Scholar

[36]

A. Quarteroni, F. Pasquarelli and A. Valli, Heterogeneous domain decomposition: principles, algorithms, applications,, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, (1991), 129. Google Scholar

[37]

A. Valli, Mathematical results for compressible flows,, in Mathematical Topics in Fluid Mechanics (Lisbon, (1991), 193. Google Scholar

[38]

A. Quarteroni and A. Valli, Mathematical modelling and numerical approximation of fluid flow,, in Methods and Techniques in Computational Chemistry: METECC-94. Volume C: Structure and Dynamics (ed. E. Clementi), (1993), 247. Google Scholar

[39]

C. Carlenzoli, A. Quarteroni and A. Valli, Numerical solution of the Navier-Stokes equations for viscous compressible flows,, in Applied Mathematics in Aerospace Science and Engineering (Erice, (1991), 81. Google Scholar

[40]

A. Alonso and A. Valli, A new approach to the coupling of viscous and inviscid Stokes equations,, East-West J. Numer. Math., 3 (1995), 29. Google Scholar

[41]

A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of $H(rot;\Omega)$ and the construction of an extension operator,, Manuscripta Math., 89 (1996), 159. doi: 10.1007/BF02567511. Google Scholar

[42]

A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations,, in 27th Computational Fluid Dynamics (ed. H. Deconinck), (1996), 1. Google Scholar

[43]

A. Alonso and A. Valli, Domain decomposition algorithms for low-frequency time-harmonic Maxwell equations,, in Numerical Modelling in Continuum Mechanics (Prague, (1997), 3. Google Scholar

[44]

A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations,, Comput. Methods Appl. Mech. Engrg., 143 (1997), 97. doi: 10.1016/S0045-7825(96)01144-9. Google Scholar

[45]

A. Alonso, R. L. Trotta and A. Valli, Coercive domain decomposition algorithms for advection-diffusion equations and systems,, J. Comput. Appl. Math., 96 (1998), 51. doi: 10.1016/S0377-0427(98)00091-0. Google Scholar

[46]

A. Alonso and A. Valli, Finite element approximation of heterogeneous time-harmonic Maxwell equations via a domain decomposition approach,, in International Conference on Differential Equations (Lisboa, (1995), 227. Google Scholar

[47]

A. Alonso and A. Valli, Unique solvability for high-frequency heterogeneous time-harmonic Maxwell equations via Fredholm alternative theory,, Math. Methods Appl. Sci., 21 (1998), 463. doi: 10.1002/(SICI)1099-1476(199804)21:6<463::AID-MMA947>3.0.CO;2-U. Google Scholar

[48]

A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations,, Math. Comp., 68 (1999), 607. doi: 10.1090/S0025-5718-99-01013-3. Google Scholar

[49]

A. Quarteroni and A. Valli, Domain decomposition methods for compressible flows,, in Error Control and Adaptivity in Scientific Computing (Antalya, (1998), 221. Google Scholar

[50]

A. Alonso Rodríguez and A. Valli, Domain decomposition algorithms for time-harmonic Maxwell equations with damping,, M2AN Math. Model. Numer. Anal., 35 (2001), 825. doi: 10.1051/m2an:2001137. Google Scholar

[51]

A. Alonso Rodríguez and A. Valli, Domain decomposition methods for time-harmonic Maxwell equations: Numerical results},, in Recent Developments in Domain Decomposition Methods (Zürich, (2001), 157. doi: 10.1007/978-3-642-56118-4_10. Google Scholar

[52]

A. Alonso Rodríguez, P. Fernandes and A. Valli, The time-harmonic eddy-current problem in general domains: Solvability via scalar potentials,, in Computational Electromagnetics (Kiel, (2001), 143. doi: 10.1007/978-3-642-55745-3_10. Google Scholar

[53]

A. Alonso Rodríguez, P. Fernandes and A. Valli, Weak and strong formulations for the time-harmonic eddy-current problem in general multi-connected domains,, European J. Appl. Math., 14 (2003), 387. doi: 10.1017/S0956792503005151. Google Scholar

[54]

A. Alonso Rodríguez, R. Hiptmair and A. Valli, Mixed finite element approximation of eddy current problems,, IMA J. Numer. Anal., 24 (2004), 255. doi: 10.1093/imanum/24.2.255. Google Scholar

[55]

A. Alonso Rodríguez and A. Valli, Mixed finite element approximation of eddy current problems based on the electric field,, in ECCOMAS 2004: European Congress on Computational Methods in Applied Sciences and Engineering (Jyväskylä, (2004), 1. Google Scholar

[56]

A. Alonso Rodríguez, R. Hiptmair and A. Valli, A hybrid formulation of eddy current problems,, Numer. Methods Partial Differential Equations, 21 (2005), 742. doi: 10.1002/num.20060. Google Scholar

[57]

A. Quarteroni, M. Sala and A. Valli, An interface-strip domain decomposition preconditioner,, SIAM J. Sci. Comput., 28 (2006), 498. doi: 10.1137/04061057X. Google Scholar

[58]

O. Bíró and A. Valli, The Coulomb gauged vector potential formulation for the eddy-current problem in general geometry: well-posedness and numerical approximation,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1890. doi: 10.1016/j.cma.2006.10.008. Google Scholar

[59]

M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling,, SIAM J. Numer. Anal., 45 (2007), 1246. doi: 10.1137/06065091X. Google Scholar

[60]

P. Fernandes and A. Valli, Lorenz-gauged vector potential formulations for the time-harmonic eddy-current problem with $L^\infty$-regularity of material properties,, Math. Methods Appl. Sci., 31 (2008), 71. doi: 10.1002/mma.900. Google Scholar

[61]

A. Alonso Rodríguez and A. Valli, Voltage and current excitation for time-harmonic eddy-current problems,, SIAM J. Appl. Math., 68 (2008), 1477. doi: 10.1137/070697677. Google Scholar

[62]

A. Alonso Rodríguez and A. Valli, A FEM-BEM approach for electro-magnetostatics and time-harmonic eddy-current problems,, Appl. Numer. Math., 59 (2009), 2036. doi: 10.1016/j.apnum.2008.12.002. Google Scholar

[63]

A. Alonso Rodríguez, A. Valli and R. Vázquez Hernández, A formulation of the eddy current problem in the presence of electric ports,, Numer. Math., 113 (2009), 643. doi: 10.1007/s00211-009-0241-7. Google Scholar

[64]

A. Alonso Rodríguez, J. Camaño and A. Valli, Inverse source problems for eddy current equations,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/1/015006. Google Scholar

[65]

A. Valli, Solving an electrostatics-like problem with a current dipole source by means of the duality method,, Appl. Math. Lett., 25 (2012), 1410. doi: 10.1016/j.aml.2011.12.013. Google Scholar

[66]

A. Alonso Rodríguez, E. Bertolazzi, R. Ghiloni and A. Valli, Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems,, SIAM J. Numer. Anal., 51 (2013), 2380. doi: 10.1137/120890648. Google Scholar

[67]

A. Alonso Rodríguez, J. Camaño, R. Rodríguez and A. Valli, A posteriori error estimates for the problem of electrostatics with a dipole source,, Comput. Math. Appl., 68 (2014), 464. doi: 10.1016/j.camwa.2014.06.017. Google Scholar

[68]

A. Alonso Rodríguez and A. Valli, Finite element potentials,, Appl. Numer. Math., 95 (2015), 2. doi: 10.1016/j.apnum.2014.05.014. Google Scholar

[69]

A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations,, Springer Italia, (2010). doi: 10.1007/978-88-470-1506-7. Google Scholar

[70]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations,, Oxford University Press, (1999). Google Scholar

[71]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,, Springer, (1994). Google Scholar

show all references

References:
[1]

L. Carbone and A. Valli, Filtrazione di un fluido in un mezzo non omogeneo tridimensionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 61 (1976), 161. Google Scholar

[2]

A. Valli, L'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 61 (1976), 1. Google Scholar

[3]

L. Carbone and A. Valli, Free boundary enclosure in a three-dimensional filtration problem,, Appl. Math. Optim., 4 (1977), 1. doi: 10.1007/BF01442128. Google Scholar

[4]

A. Valli, Soluzioni classiche dell'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile,, Ricerche Mat., 26 (1977), 301. Google Scholar

[5]

L. Carbone and A. Valli, Asymptotic behaviour of the free boundary in a filtration problem,, Boll. Un. Mat. Ital. B (5), 15 (1978), 217. Google Scholar

[6]

L. Carbone and A. Valli, Filtration through a porous non-homogeneous medium with variable cross-section,, J. Analyse Math., 33 (1978), 191. doi: 10.1007/BF02790173. Google Scholar

[7]

H. Beirão da Veiga and A. Valli, On the motion of a non-homogeneous ideal incompressible fluid in an external force field,, Rend. Sem. Mat. Univ. Padova, 59 (1978), 117. Google Scholar

[8]

H. Beirão da Veiga and A. Valli, Existence of $C^\infty$ solutions of the Euler equations for non-homogeneous fluids,, Comm. Partial Differential Equations, 5 (1980), 95. doi: 10.1080/03605308008820134. Google Scholar

[9]

H. Beirão da Veiga and A. Valli, On the Euler equations for non-homogeneous fluids (I),, Rend. Sem. Mat. Univ. Padova, 63 (1980), 151. Google Scholar

[10]

H. Beirão da Veiga and A. Valli, On the Euler equations for non-homogeneous fluids (II),, J. Math. Anal. Appl., 73 (1980), 338. doi: 10.1016/0022-247X(80)90282-6. Google Scholar

[11]

A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds,, Boll. Un. Mat. Ital. C (5), 18 (1981), 317. Google Scholar

[12]

H. Beirão da Veiga, R. Serapioni and A. Valli, On the motion of non-homogeneous fluids in the presence of diffusion,, J. Math. Anal. Appl., 85 (1982), 179. doi: 10.1016/0022-247X(82)90033-6. Google Scholar

[13]

A. Valli, A correction to the paper: "An existence theorem for compressible viscous fluids'',, Ann. Mat. Pura Appl. (4), 132 (1982), 399. doi: 10.1007/BF01760990. Google Scholar

[14]

A. Valli, An existence theorem for compressible viscous fluids,, Ann. Mat. Pura Appl. (4), 130 (1982), 197. doi: 10.1007/BF01761495. Google Scholar

[15]

P. Secchi and A. Valli, A free boundary problem for compressible viscous fluids,, J. Reine Angew. Math., 341 (1983), 1. doi: 10.1515/crll.1983.341.1. Google Scholar

[16]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10 (1983), 607. Google Scholar

[17]

A. Valli, Free boundary problems for compressible viscous fluids,, in Fluid Dynamics (Varenna, (1982), 175. doi: 10.1007/BFb0072331. Google Scholar

[18]

P. Marcati and A. Valli, Almost-periodic solutions to the Navier-Stokes equations for compressible fluids,, Boll. Un. Mat. Ital. B (6), 4 (1985), 969. Google Scholar

[19]

A. Valli, Global existence theorems for compressible viscous fluids,, in Nonlinear Variational Problems (Isola d'Elba, (1983), 120. Google Scholar

[20]

A. Valli, On the integral representation of the solution to the Stokes system,, Rend. Sem. Mat. Univ. Padova, 74 (1985), 85. Google Scholar

[21]

A. Valli, Navier-Stokes equations for compressible fluids: Global estimates and periodic solutions,, in Nonlinear Functional Analysis and its Applications, (1983), 467. Google Scholar

[22]

A. Valli, Qualitative properties of the solutions to the Navier-Stokes equations for compressible fluids,, in Equadiff 6 (Brno, (1985), 259. doi: 10.1007/BFb0076079. Google Scholar

[23]

A. Valli, Stationary solutions to the Navier-Stokes equations for compressible fluids,, in BAIL IV (Novosibirsk, (1986), 417. Google Scholar

[24]

A. Valli and W. Zajączkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case,, Comm. Math. Phys., 103 (1986), 259. doi: 10.1007/BF01206939. Google Scholar

[25]

A. Valli, On the existence of stationary solutions to compressible Navier-Stokes equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 99. Google Scholar

[26]

I. Straškraba and A. Valli, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations,, Manuscripta Math., 62 (1988), 401. doi: 10.1007/BF01357718. Google Scholar

[27]

A. Valli and W. Zajączkowski, About the motion of non-homogeneous ideal incompressible fluids,, Nonlinear Anal., 12 (1988), 43. doi: 10.1016/0362-546X(88)90011-9. Google Scholar

[28]

A. Valli, An existence theorem for non-homogeneous inviscid incompressible fluids,, in Differential Equations (Xanthi, (1987), 691. Google Scholar

[29]

V. Lovicar, I. Straškraba and A. Valli, On bounded solutions of one-dimensional compressible Navier-Stokes equations,, Rend. Sem. Mat. Univ. Padova, 83 (1990), 81. Google Scholar

[30]

A. Quarteroni and A. Valli, Domain decomposition for a generalized Stokes problem,, in, (1988), 59. Google Scholar

[31]

A. Valli, On the one-dimensional Navier-Stokes equations for compressible fluids,, in The Navier-Stokes Equations (Oberwolfach, (1988), 173. doi: 10.1007/BFb0086068. Google Scholar

[32]

A. Quarteroni, G. Sacchi Landriani and A. Valli, Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements,, Numer. Math., 59 (1991), 831. doi: 10.1007/BF01385813. Google Scholar

[33]

A. Quarteroni and A. Valli, Theory and applications of Steklov-Poincaré for boundary value problems: the heterogeneous operator case,, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, (1990), 58. Google Scholar

[34]

A. Quarteroni and A. Valli, Theory and applications of Steklov-Poincaré operators for boundary value problems,, in Applied and Industrial Mathematics (Venice, (1989), 179. Google Scholar

[35]

C. Carlenzoli, A. Quarteroni and A. Valli, Spectral domain decomposition methods for compressible Navier-Stokes equations,, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, (1991), 441. Google Scholar

[36]

A. Quarteroni, F. Pasquarelli and A. Valli, Heterogeneous domain decomposition: principles, algorithms, applications,, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, (1991), 129. Google Scholar

[37]

A. Valli, Mathematical results for compressible flows,, in Mathematical Topics in Fluid Mechanics (Lisbon, (1991), 193. Google Scholar

[38]

A. Quarteroni and A. Valli, Mathematical modelling and numerical approximation of fluid flow,, in Methods and Techniques in Computational Chemistry: METECC-94. Volume C: Structure and Dynamics (ed. E. Clementi), (1993), 247. Google Scholar

[39]

C. Carlenzoli, A. Quarteroni and A. Valli, Numerical solution of the Navier-Stokes equations for viscous compressible flows,, in Applied Mathematics in Aerospace Science and Engineering (Erice, (1991), 81. Google Scholar

[40]

A. Alonso and A. Valli, A new approach to the coupling of viscous and inviscid Stokes equations,, East-West J. Numer. Math., 3 (1995), 29. Google Scholar

[41]

A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of $H(rot;\Omega)$ and the construction of an extension operator,, Manuscripta Math., 89 (1996), 159. doi: 10.1007/BF02567511. Google Scholar

[42]

A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations,, in 27th Computational Fluid Dynamics (ed. H. Deconinck), (1996), 1. Google Scholar

[43]

A. Alonso and A. Valli, Domain decomposition algorithms for low-frequency time-harmonic Maxwell equations,, in Numerical Modelling in Continuum Mechanics (Prague, (1997), 3. Google Scholar

[44]

A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations,, Comput. Methods Appl. Mech. Engrg., 143 (1997), 97. doi: 10.1016/S0045-7825(96)01144-9. Google Scholar

[45]

A. Alonso, R. L. Trotta and A. Valli, Coercive domain decomposition algorithms for advection-diffusion equations and systems,, J. Comput. Appl. Math., 96 (1998), 51. doi: 10.1016/S0377-0427(98)00091-0. Google Scholar

[46]

A. Alonso and A. Valli, Finite element approximation of heterogeneous time-harmonic Maxwell equations via a domain decomposition approach,, in International Conference on Differential Equations (Lisboa, (1995), 227. Google Scholar

[47]

A. Alonso and A. Valli, Unique solvability for high-frequency heterogeneous time-harmonic Maxwell equations via Fredholm alternative theory,, Math. Methods Appl. Sci., 21 (1998), 463. doi: 10.1002/(SICI)1099-1476(199804)21:6<463::AID-MMA947>3.0.CO;2-U. Google Scholar

[48]

A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations,, Math. Comp., 68 (1999), 607. doi: 10.1090/S0025-5718-99-01013-3. Google Scholar

[49]

A. Quarteroni and A. Valli, Domain decomposition methods for compressible flows,, in Error Control and Adaptivity in Scientific Computing (Antalya, (1998), 221. Google Scholar

[50]

A. Alonso Rodríguez and A. Valli, Domain decomposition algorithms for time-harmonic Maxwell equations with damping,, M2AN Math. Model. Numer. Anal., 35 (2001), 825. doi: 10.1051/m2an:2001137. Google Scholar

[51]

A. Alonso Rodríguez and A. Valli, Domain decomposition methods for time-harmonic Maxwell equations: Numerical results},, in Recent Developments in Domain Decomposition Methods (Zürich, (2001), 157. doi: 10.1007/978-3-642-56118-4_10. Google Scholar

[52]

A. Alonso Rodríguez, P. Fernandes and A. Valli, The time-harmonic eddy-current problem in general domains: Solvability via scalar potentials,, in Computational Electromagnetics (Kiel, (2001), 143. doi: 10.1007/978-3-642-55745-3_10. Google Scholar

[53]

A. Alonso Rodríguez, P. Fernandes and A. Valli, Weak and strong formulations for the time-harmonic eddy-current problem in general multi-connected domains,, European J. Appl. Math., 14 (2003), 387. doi: 10.1017/S0956792503005151. Google Scholar

[54]

A. Alonso Rodríguez, R. Hiptmair and A. Valli, Mixed finite element approximation of eddy current problems,, IMA J. Numer. Anal., 24 (2004), 255. doi: 10.1093/imanum/24.2.255. Google Scholar

[55]

A. Alonso Rodríguez and A. Valli, Mixed finite element approximation of eddy current problems based on the electric field,, in ECCOMAS 2004: European Congress on Computational Methods in Applied Sciences and Engineering (Jyväskylä, (2004), 1. Google Scholar

[56]

A. Alonso Rodríguez, R. Hiptmair and A. Valli, A hybrid formulation of eddy current problems,, Numer. Methods Partial Differential Equations, 21 (2005), 742. doi: 10.1002/num.20060. Google Scholar

[57]

A. Quarteroni, M. Sala and A. Valli, An interface-strip domain decomposition preconditioner,, SIAM J. Sci. Comput., 28 (2006), 498. doi: 10.1137/04061057X. Google Scholar

[58]

O. Bíró and A. Valli, The Coulomb gauged vector potential formulation for the eddy-current problem in general geometry: well-posedness and numerical approximation,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1890. doi: 10.1016/j.cma.2006.10.008. Google Scholar

[59]

M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling,, SIAM J. Numer. Anal., 45 (2007), 1246. doi: 10.1137/06065091X. Google Scholar

[60]

P. Fernandes and A. Valli, Lorenz-gauged vector potential formulations for the time-harmonic eddy-current problem with $L^\infty$-regularity of material properties,, Math. Methods Appl. Sci., 31 (2008), 71. doi: 10.1002/mma.900. Google Scholar

[61]

A. Alonso Rodríguez and A. Valli, Voltage and current excitation for time-harmonic eddy-current problems,, SIAM J. Appl. Math., 68 (2008), 1477. doi: 10.1137/070697677. Google Scholar

[62]

A. Alonso Rodríguez and A. Valli, A FEM-BEM approach for electro-magnetostatics and time-harmonic eddy-current problems,, Appl. Numer. Math., 59 (2009), 2036. doi: 10.1016/j.apnum.2008.12.002. Google Scholar

[63]

A. Alonso Rodríguez, A. Valli and R. Vázquez Hernández, A formulation of the eddy current problem in the presence of electric ports,, Numer. Math., 113 (2009), 643. doi: 10.1007/s00211-009-0241-7. Google Scholar

[64]

A. Alonso Rodríguez, J. Camaño and A. Valli, Inverse source problems for eddy current equations,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/1/015006. Google Scholar

[65]

A. Valli, Solving an electrostatics-like problem with a current dipole source by means of the duality method,, Appl. Math. Lett., 25 (2012), 1410. doi: 10.1016/j.aml.2011.12.013. Google Scholar

[66]

A. Alonso Rodríguez, E. Bertolazzi, R. Ghiloni and A. Valli, Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems,, SIAM J. Numer. Anal., 51 (2013), 2380. doi: 10.1137/120890648. Google Scholar

[67]

A. Alonso Rodríguez, J. Camaño, R. Rodríguez and A. Valli, A posteriori error estimates for the problem of electrostatics with a dipole source,, Comput. Math. Appl., 68 (2014), 464. doi: 10.1016/j.camwa.2014.06.017. Google Scholar

[68]

A. Alonso Rodríguez and A. Valli, Finite element potentials,, Appl. Numer. Math., 95 (2015), 2. doi: 10.1016/j.apnum.2014.05.014. Google Scholar

[69]

A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations,, Springer Italia, (2010). doi: 10.1007/978-88-470-1506-7. Google Scholar

[70]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations,, Oxford University Press, (1999). Google Scholar

[71]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,, Springer, (1994). Google Scholar

[1]

Hugo Beirão da Veiga, Alessandro Morando, Paola Trebeschi. The research of Paolo Secchi. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : iii-ix. doi: 10.3934/dcdss.2016.9.1iii

[2]

Daniel Genin. Research announcement: Boundedness of orbits for trapezoidal outer billiards. Electronic Research Announcements, 2008, 15: 71-78. doi: 10.3934/era.2008.15.71

[3]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[4]

Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209

[5]

Richard Evan Schwartz. Research announcement: unbounded orbits for outer billiards. Electronic Research Announcements, 2007, 14: 1-6. doi: 10.3934/era.2007.14.1

[6]

Daniel T. Wise. Research announcement: The structure of groups with a quasiconvex hierarchy. Electronic Research Announcements, 2009, 16: 44-55. doi: 10.3934/era.2009.16.44

[7]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. The mathematical and theoretical biology institute - a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1351-1363. doi: 10.3934/mbe.2013.10.1351

[8]

Yuxue Li, Maozhu Jin, Peiyu Ren, Zhixue Liao. Research on the optimal initial shunt strategy of Jiuzhaigou based on the optimization model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1239-1249. doi: 10.3934/dcdss.2015.8.1239

[9]

Zuo-Jun max Shen. Integrated supply chain design models: a survey and future research directions. Journal of Industrial & Management Optimization, 2007, 3 (1) : 1-27. doi: 10.3934/jimo.2007.3.1

[10]

Aloev Rakhmatillo, Khudoyberganov Mirzoali, Blokhin Alexander. Construction and research of adequate computational models for quasilinear hyperbolic systems. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 277-289. doi: 10.3934/naco.2018017

[11]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[12]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1427-1440. doi: 10.3934/dcdss.2019098

[13]

Xiaohong Zhu, Zili Yang, Tabharit Zoubir. Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1296. doi: 10.3934/dcdss.2019088

[14]

Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1199-1218. doi: 10.3934/dcdss.2019083

[15]

Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415

[16]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial & Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[17]

Yanan Wang, Tao Xie, Xiaowen Jie. A mathematical analysis for the forecast research on tourism carrying capacity to promote the effective and sustainable development of tourism. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 837-847. doi: 10.3934/dcdss.2019056

[18]

Chao Mi, Jun Wang, Weijian Mi, Youfang Huang, Zhiwei Zhang, Yongsheng Yang, Jun Jiang, Postolache Octavian. Research on regional clustering and two-stage SVM method for container truck recognition. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1117-1133. doi: 10.3934/dcdss.2019077

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

[Back to Top]