February  2016, 9(1): 235-253. doi: 10.3934/dcdss.2016.9.235

Spectral approximation of the curl operator in multiply connected domains

1. 

CI2MA, Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile, Chile

2. 

Department of Mathematics, University of Maryland, College Park, MD 20742, United States

Received  September 2014 Revised  February 2015 Published  December 2015

A numerical scheme based on Nédélec finite elements has been recently introduced to solve the eigenvalue problem for the curl operator in simply connected domains. This topological assumption is not just a technicality, since the eigenvalue problem is ill-posed on multiply connected domains, in the sense that its spectrum is the whole complex plane. However, additional constraints can be added to the eigenvalue problem in order to recover a well-posed problem with a discrete spectrum. Vanishing circulations on each non-bounding cycle in the complement of the domain have been chosen as additional constraints in this paper. A mixed weak formulation including a Lagrange multiplier (that turns out to vanish) is introduced and shown to be well-posed. This formulation is discretized by Nédélec elements, while standard finite elements are used for the Lagrange multiplier. Spectral convergence is proved as well as a priori error estimates. It is also shown how to implement this finite element discretization taking care of these additional constraints. Finally, a numerical test to assess the performance of the proposed methods is reported.
Citation: Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235
References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Methods Appl. Sci., 21 (1998), 823.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.  Google Scholar

[2]

E. Beltrami, Considerazioni idrodinamiche,, Il Nuovo Cimento (1877-1894), 25 (1889), 1877.  doi: 10.1007/BF02719090.  Google Scholar

[3]

A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations,, SIAM J. Numer. Anal., 40 (2002), 1823.  doi: 10.1137/S0036142901390780.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011).   Google Scholar

[5]

S. Chandrasekhar and P. C. Kendall, On force-free magnetic fields,, Astrophys. J., 126 (1957), 457.  doi: 10.1086/146413.  Google Scholar

[6]

S. Chandrasekhar and L. Woltjer, On force-free magnetic fields,, Proc. Nat. Acad. Sci. USA, 44 (1958), 285.  doi: 10.1073/pnas.44.4.285.  Google Scholar

[7]

C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phńomènes successifs de bifurcation,, Ann. Sc. Norm. Sup. Pisa, 5 (1978), 28.   Google Scholar

[8]

V. Girault and P.-A Raviart, Finite Element Approximations of the Navier-Stokes Equations, Theory and Algorithms,, Springer, (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[9]

R. Hiptmair, P. R. Kotiuga and S. Tordeux, Self-adjoint curl operators,, Ann. Mat. Pura Appl., 191 (2012), 431.  doi: 10.1007/s10231-011-0189-y.  Google Scholar

[10]

E. Lara, Espectro del operador rotacional en dominios no simplemente conexos,, Mathematical Engineering thesis, (2013).   Google Scholar

[11]

S. Meddahi and V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem,, $M^2AN$, 37 (2003), 291.  doi: 10.1051/m2an:2003027.  Google Scholar

[12]

B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods,, Math. Comp., 36 (1981), 427.  doi: 10.1090/S0025-5718-1981-0606505-9.  Google Scholar

[13]

P. Monk, Finite Element Methods for Maxwell's Equations,, Clarendon Press, (2003).  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[14]

R. Rodríguez and P. Venegas, Numerical approximation of the spectrum of the curl operator,, Math. Comp., 83 (2014), 553.  doi: 10.1090/S0025-5718-2013-02745-7.  Google Scholar

[15]

L. Woltjer, A theorem on force-free magnetic fields,, Proc. Natl. Acad. Sci. USA, 44 (1958), 489.  doi: 10.1073/pnas.44.6.489.  Google Scholar

[16]

_________, The crab nebula,, Bull. Astron. Inst. Neth., 14 (1958), 39.   Google Scholar

[17]

J. Xiao and Q. Hu, An iterative method for computing Beltrami fields on bounded domains,, Institute of Computational Mathematics and Scientific/Engineering Computing, (2012), 12.   Google Scholar

[18]

Z. Yoshida and Y. Giga, Remarks on spectra of operator rot,, Math. Z., 204 (1990), 235.  doi: 10.1007/BF02570870.  Google Scholar

show all references

References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Methods Appl. Sci., 21 (1998), 823.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.  Google Scholar

[2]

E. Beltrami, Considerazioni idrodinamiche,, Il Nuovo Cimento (1877-1894), 25 (1889), 1877.  doi: 10.1007/BF02719090.  Google Scholar

[3]

A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations,, SIAM J. Numer. Anal., 40 (2002), 1823.  doi: 10.1137/S0036142901390780.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011).   Google Scholar

[5]

S. Chandrasekhar and P. C. Kendall, On force-free magnetic fields,, Astrophys. J., 126 (1957), 457.  doi: 10.1086/146413.  Google Scholar

[6]

S. Chandrasekhar and L. Woltjer, On force-free magnetic fields,, Proc. Nat. Acad. Sci. USA, 44 (1958), 285.  doi: 10.1073/pnas.44.4.285.  Google Scholar

[7]

C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phńomènes successifs de bifurcation,, Ann. Sc. Norm. Sup. Pisa, 5 (1978), 28.   Google Scholar

[8]

V. Girault and P.-A Raviart, Finite Element Approximations of the Navier-Stokes Equations, Theory and Algorithms,, Springer, (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[9]

R. Hiptmair, P. R. Kotiuga and S. Tordeux, Self-adjoint curl operators,, Ann. Mat. Pura Appl., 191 (2012), 431.  doi: 10.1007/s10231-011-0189-y.  Google Scholar

[10]

E. Lara, Espectro del operador rotacional en dominios no simplemente conexos,, Mathematical Engineering thesis, (2013).   Google Scholar

[11]

S. Meddahi and V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem,, $M^2AN$, 37 (2003), 291.  doi: 10.1051/m2an:2003027.  Google Scholar

[12]

B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods,, Math. Comp., 36 (1981), 427.  doi: 10.1090/S0025-5718-1981-0606505-9.  Google Scholar

[13]

P. Monk, Finite Element Methods for Maxwell's Equations,, Clarendon Press, (2003).  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[14]

R. Rodríguez and P. Venegas, Numerical approximation of the spectrum of the curl operator,, Math. Comp., 83 (2014), 553.  doi: 10.1090/S0025-5718-2013-02745-7.  Google Scholar

[15]

L. Woltjer, A theorem on force-free magnetic fields,, Proc. Natl. Acad. Sci. USA, 44 (1958), 489.  doi: 10.1073/pnas.44.6.489.  Google Scholar

[16]

_________, The crab nebula,, Bull. Astron. Inst. Neth., 14 (1958), 39.   Google Scholar

[17]

J. Xiao and Q. Hu, An iterative method for computing Beltrami fields on bounded domains,, Institute of Computational Mathematics and Scientific/Engineering Computing, (2012), 12.   Google Scholar

[18]

Z. Yoshida and Y. Giga, Remarks on spectra of operator rot,, Math. Z., 204 (1990), 235.  doi: 10.1007/BF02570870.  Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[4]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[13]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[17]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[18]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (41)
  • HTML views (1)
  • Cited by (1)

Other articles
by authors

[Back to Top]