\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on the Navier-Stokes IBVP with small data in $L^n$

Abstract Related Papers Cited by
  • We study existence and uniqueness of regular solutions to the Navier-Stokes initial boundary value problem in bounded or exterior domains $\Omega$ ($\partial\Omega$ sufficiently smooth) under the assumption $v_\circ$ in $L^n(\Omega)$, sufficiently small, and we prove global in time existence. The results are known in literature (see Remark 3), however the proof proposed here seems shorter, and we give a result concerning the behavior in time of the $L^q$-norm ($q\in[n,\infty]$) of the solutions and of the $L^n$-norm of the time derivative, with a sort of continuous dependence on the data, which, as far as we know, are new, and are close to the ones of the solution to the Stokes problem. Moreover, the constant for the $L^q$-estimate is independent of $q$.
    Mathematics Subject Classification: 35Q30, 76D05, 76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Beirăo da Veiga and P. Secchi, $L^p$-stability for the strong solutions of the Navier-Stokes equations in the whole space, Arch. for Rational Mech. and Anal., 98 (1987), 65-69.doi: 10.1007/BF00279962.

    [2]

    F. Crispo and P. Maremonti, An interpolation inequality in exterior domains, Rend. Sem. Mat. Univ. Padova, 112 (2004), 11-39.

    [3]

    Y. Enomoto and Y. Shibata, On a stability theorem of the Navier-Stokes equation in an exterior domain, in Hyperbolic Problems, Theory, Numerics and Applications, I, Yokohama, 2006, 383-389.

    [4]

    R. Farwig, H. Kozono and H. Sohr, An Lq-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.doi: 10.1007/BF02588049.

    [5]

    C. Foias, Une remarque sur l'unicité des solutions des équations de Navier-Stokes en dimension $n$, Bull. Soc. Math. France, 89 (1961), 1-8.

    [6]

    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I, Springer-Verlag, 1994.doi: 10.1007/978-1-4612-5364-8.

    [7]

    G. P. Galdi, J. Heywood and Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest, Arch. Rational Mech. Anal., 138 (1997), 307-318.doi: 10.1007/s002050050043.

    [8]

    Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.doi: 10.1016/0022-0396(86)90096-3.

    [9]

    Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.

    [10]

    T. Kato, Strong $L^p$-solution of the Navier-Stokes equation in $\mathbbR^n$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.doi: 10.1007/BF01174182.

    [11]

    H. Kozono and T. Ogawa, Decay properties of strong solutions for the Navier-Stokes equations in two dimensional unbounded domains, Arch. Rational Mech. Anal., 122 (1993), 1-17.doi: 10.1007/BF01816552.

    [12]

    H. Kozono and T. Ogawa, On stability of Navier-Stokes flows in exterior domains, Arch. Rational Mech. Anal., 128 (1994), 1-31.doi: 10.1007/BF00380792.

    [13]

    P. Maremonti, Stabilità asintotica in media per moti fluidi viscosi in domini esterni, Annali di Matematica Pura ed Applicata, 142 (1985), 57-75.

    [14]

    P. Maremonti, On the asymptotic behavior of the $L^2$-norm of suitable weak solutions to the Navier-Stokes equations in three-dimensional exterior domains, Comm. Math. Phys., 118 (1988), 385-400.doi: 10.1007/BF01466723.

    [15]

    P. Maremonti, Some results on the asymptotic behavior of Hopf weak solutions to the Navier-Stokes equations in unbounded domains, Math. Z., 210 (1992), 1-22.doi: 10.1007/BF02571780.

    [16]

    P. Maremonti, A remark on the Stokes problem with initial data in $L^1$, J. Math. Fluid Mech., 13 (2011), 469-480.doi: 10.1007/s00021-010-0036-8.

    [17]

    P. Maremonti, A remark on the Stokes problem in Lorentz spaces, Discrete and Continuous Dynamical Systems, series S, 6 (2013), 1323-1342.doi: 10.3934/dcdss.2013.6.1323.

    [18]

    P. Maremonti, On the Stokes problem in exterior domains: The maximum modulus theorem, Discrete and Continuous Dynamical Systems, 34 (2014), 2135-2171.doi: 10.3934/dcds.2014.34.2135.

    [19]

    P. Maremonti and V. A. Solonnikov, An estimate for the solutions of Stokes system in exterior domains, Zap. Nauch. Sem. LOMI, 180 (1990), 105-120; trasl. in J. of Math. Sciences, 68 (1994), 229-239.doi: 10.1007/BF01249337.

    [20]

    P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains, Ann. Sc. Norm. Sup. Pisa, 24 (1997), 395-449.

    [21]

    V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., 8 (1977), 467-529.doi: 10.1007/BF01084616.

    [22]

    M. Yamazaki, The Navier-Stokes equations in the weak-Ln external force, Math. Ann., 317 (2000), 635-675.doi: 10.1007/PL00004418.

  • 加载中
SHARE

Article Metrics

HTML views(267) PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return