Citation: |
[1] |
H. Beirăo da Veiga and P. Secchi, $L^p$-stability for the strong solutions of the Navier-Stokes equations in the whole space, Arch. for Rational Mech. and Anal., 98 (1987), 65-69.doi: 10.1007/BF00279962. |
[2] |
F. Crispo and P. Maremonti, An interpolation inequality in exterior domains, Rend. Sem. Mat. Univ. Padova, 112 (2004), 11-39. |
[3] |
Y. Enomoto and Y. Shibata, On a stability theorem of the Navier-Stokes equation in an exterior domain, in Hyperbolic Problems, Theory, Numerics and Applications, I, Yokohama, 2006, 383-389. |
[4] |
R. Farwig, H. Kozono and H. Sohr, An Lq-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.doi: 10.1007/BF02588049. |
[5] |
C. Foias, Une remarque sur l'unicité des solutions des équations de Navier-Stokes en dimension $n$, Bull. Soc. Math. France, 89 (1961), 1-8. |
[6] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I, Springer-Verlag, 1994.doi: 10.1007/978-1-4612-5364-8. |
[7] |
G. P. Galdi, J. Heywood and Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest, Arch. Rational Mech. Anal., 138 (1997), 307-318.doi: 10.1007/s002050050043. |
[8] |
Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.doi: 10.1016/0022-0396(86)90096-3. |
[9] |
Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281. |
[10] |
T. Kato, Strong $L^p$-solution of the Navier-Stokes equation in $\mathbbR^n$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.doi: 10.1007/BF01174182. |
[11] |
H. Kozono and T. Ogawa, Decay properties of strong solutions for the Navier-Stokes equations in two dimensional unbounded domains, Arch. Rational Mech. Anal., 122 (1993), 1-17.doi: 10.1007/BF01816552. |
[12] |
H. Kozono and T. Ogawa, On stability of Navier-Stokes flows in exterior domains, Arch. Rational Mech. Anal., 128 (1994), 1-31.doi: 10.1007/BF00380792. |
[13] |
P. Maremonti, Stabilità asintotica in media per moti fluidi viscosi in domini esterni, Annali di Matematica Pura ed Applicata, 142 (1985), 57-75. |
[14] |
P. Maremonti, On the asymptotic behavior of the $L^2$-norm of suitable weak solutions to the Navier-Stokes equations in three-dimensional exterior domains, Comm. Math. Phys., 118 (1988), 385-400.doi: 10.1007/BF01466723. |
[15] |
P. Maremonti, Some results on the asymptotic behavior of Hopf weak solutions to the Navier-Stokes equations in unbounded domains, Math. Z., 210 (1992), 1-22.doi: 10.1007/BF02571780. |
[16] |
P. Maremonti, A remark on the Stokes problem with initial data in $L^1$, J. Math. Fluid Mech., 13 (2011), 469-480.doi: 10.1007/s00021-010-0036-8. |
[17] |
P. Maremonti, A remark on the Stokes problem in Lorentz spaces, Discrete and Continuous Dynamical Systems, series S, 6 (2013), 1323-1342.doi: 10.3934/dcdss.2013.6.1323. |
[18] |
P. Maremonti, On the Stokes problem in exterior domains: The maximum modulus theorem, Discrete and Continuous Dynamical Systems, 34 (2014), 2135-2171.doi: 10.3934/dcds.2014.34.2135. |
[19] |
P. Maremonti and V. A. Solonnikov, An estimate for the solutions of Stokes system in exterior domains, Zap. Nauch. Sem. LOMI, 180 (1990), 105-120; trasl. in J. of Math. Sciences, 68 (1994), 229-239.doi: 10.1007/BF01249337. |
[20] |
P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains, Ann. Sc. Norm. Sup. Pisa, 24 (1997), 395-449. |
[21] |
V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., 8 (1977), 467-529.doi: 10.1007/BF01084616. |
[22] |
M. Yamazaki, The Navier-Stokes equations in the weak-Ln external force, Math. Ann., 317 (2000), 635-675.doi: 10.1007/PL00004418. |