February  2016, 9(1): 269-287. doi: 10.3934/dcdss.2016.9.269

Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem

1. 

Departamento de Matemáticas, Universidad de Oviedo, Facultad de Ciencias, Calvo Sotelo s/n, 33007 Oviedo, Spain

2. 

Departamento de Matemática, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile

Received  September 2014 Revised  February 2015 Published  December 2015

We aim to provide a finite element analysis for the elastoacoustic vibration problem. We use a dual-mixed variational formulation for the elasticity system and combine the lowest order Lagrange finite element in the fluid domain with the reduced symmetry element known as PEERS and introduced for linear elasticity in [1]. We show that the resulting global nonconforming scheme provides a correct spectral approximation and we prove quasi-optimal error estimates. Finally, we confirm the asymptotic rates of convergence by numerical experiments.
Citation: Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269
References:
[1]

D. N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for plane elasticity,, Japan J. Appl. Math., 1 (1984), 347.  doi: 10.1007/BF03167064.  Google Scholar

[2]

D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry,, Math. Comp., 76 (2007), 1699.  doi: 10.1090/S0025-5718-07-01998-9.  Google Scholar

[3]

A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes,, SIAM J. Numer. Anal., 32 (1995), 1280.  doi: 10.1137/0732059.  Google Scholar

[4]

A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems,, Internat. J. Numer. Methods Engrg., 40 (1997), 1435.  doi: 10.1002/(SICI)1097-0207(19970430)40:8<1435::AID-NME119>3.0.CO;2-P.  Google Scholar

[5]

A. Bermúdez, P. Gamallo, L. Hervella-Nieto, R. Rodríguez and D. Santamarina, Fluid-structure Acoustic Interaction,, Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods (eds. S. Marburg and B. Nolte), (2008).   Google Scholar

[6]

A. Bermúdez and R. Rodríguez, Finite element analysis of sloshing and hydroelastic vibrations under gravity,, RAIRO - Math. Model. Numer. Anal. ($M^2AN$), 33 (1999), 305.  doi: 10.1051/m2an:1999117.  Google Scholar

[7]

D. Boffi, Finite element approximation of eigenvalue problems,, Acta Numerica, 19 (2010), 1.  doi: 10.1017/S0962492910000012.  Google Scholar

[8]

D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity,, Comm. Pure Appl. Anal., 8 (2009), 95.  doi: 10.3934/cpaa.2009.8.95.  Google Scholar

[9]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[10]

M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions,, Lecture Notes in Mathematics, (1341).   Google Scholar

[11]

J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 1: The problem of convergence,, RAIRO Anal. Numér., 12 (1978), 97.   Google Scholar

[12]

G. N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of Lagrange and Arnold-Falk-Winther finite elements for a fluid-solid interaction problem in 3D,, SIAM J. Numer. Anal., 50 (2012), 1648.  doi: 10.1137/110836705.  Google Scholar

[13]

P. Grisvard, Problèmes aux limites dans les polygones. Mode d'emploi,, EDF, 1 (1986), 21.   Google Scholar

[14]

R. Hiptmair, Finite elements in computational electromagnetism,, Acta Numerica, 11 (2002), 237.  doi: 10.1017/S0962492902000041.  Google Scholar

[15]

L. Kiefling and G. C. Feng, Fluid-structure finite element vibration analysis,, AIAA J., 14 (1976), 199.  doi: 10.2514/3.61357.  Google Scholar

[16]

S. Meddahi, D. Mora and R. Rodríguez, Finite element spectral analysis for the mixed formulation of the elasticity equations,, SIAM J. Numer. Anal., 51 (2013), 1041.  doi: 10.1137/120863010.  Google Scholar

[17]

S. Meddahi, D. Mora and R. Rodríguez, Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem,, Comput. Math. Appl., 68 (2014), 1733.  doi: 10.1016/j.camwa.2014.10.016.  Google Scholar

[18]

H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction,, J. Wiley & Sons, (1995).   Google Scholar

show all references

References:
[1]

D. N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for plane elasticity,, Japan J. Appl. Math., 1 (1984), 347.  doi: 10.1007/BF03167064.  Google Scholar

[2]

D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry,, Math. Comp., 76 (2007), 1699.  doi: 10.1090/S0025-5718-07-01998-9.  Google Scholar

[3]

A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes,, SIAM J. Numer. Anal., 32 (1995), 1280.  doi: 10.1137/0732059.  Google Scholar

[4]

A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems,, Internat. J. Numer. Methods Engrg., 40 (1997), 1435.  doi: 10.1002/(SICI)1097-0207(19970430)40:8<1435::AID-NME119>3.0.CO;2-P.  Google Scholar

[5]

A. Bermúdez, P. Gamallo, L. Hervella-Nieto, R. Rodríguez and D. Santamarina, Fluid-structure Acoustic Interaction,, Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods (eds. S. Marburg and B. Nolte), (2008).   Google Scholar

[6]

A. Bermúdez and R. Rodríguez, Finite element analysis of sloshing and hydroelastic vibrations under gravity,, RAIRO - Math. Model. Numer. Anal. ($M^2AN$), 33 (1999), 305.  doi: 10.1051/m2an:1999117.  Google Scholar

[7]

D. Boffi, Finite element approximation of eigenvalue problems,, Acta Numerica, 19 (2010), 1.  doi: 10.1017/S0962492910000012.  Google Scholar

[8]

D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity,, Comm. Pure Appl. Anal., 8 (2009), 95.  doi: 10.3934/cpaa.2009.8.95.  Google Scholar

[9]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[10]

M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions,, Lecture Notes in Mathematics, (1341).   Google Scholar

[11]

J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 1: The problem of convergence,, RAIRO Anal. Numér., 12 (1978), 97.   Google Scholar

[12]

G. N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of Lagrange and Arnold-Falk-Winther finite elements for a fluid-solid interaction problem in 3D,, SIAM J. Numer. Anal., 50 (2012), 1648.  doi: 10.1137/110836705.  Google Scholar

[13]

P. Grisvard, Problèmes aux limites dans les polygones. Mode d'emploi,, EDF, 1 (1986), 21.   Google Scholar

[14]

R. Hiptmair, Finite elements in computational electromagnetism,, Acta Numerica, 11 (2002), 237.  doi: 10.1017/S0962492902000041.  Google Scholar

[15]

L. Kiefling and G. C. Feng, Fluid-structure finite element vibration analysis,, AIAA J., 14 (1976), 199.  doi: 10.2514/3.61357.  Google Scholar

[16]

S. Meddahi, D. Mora and R. Rodríguez, Finite element spectral analysis for the mixed formulation of the elasticity equations,, SIAM J. Numer. Anal., 51 (2013), 1041.  doi: 10.1137/120863010.  Google Scholar

[17]

S. Meddahi, D. Mora and R. Rodríguez, Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem,, Comput. Math. Appl., 68 (2014), 1733.  doi: 10.1016/j.camwa.2014.10.016.  Google Scholar

[18]

H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction,, J. Wiley & Sons, (1995).   Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[18]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (42)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]