• Previous Article
    Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain
  • DCDS-S Home
  • This Issue
  • Next Article
    Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem
February  2016, 9(1): 289-313. doi: 10.3934/dcdss.2016.9.289

On local existence of MHD contact discontinuities

1. 

DICATAM, Sezione di Matematica, Università di Brescia, Via Valotti, 9, 25133 Brescia

2. 

Sobolev Institute of Mathematics, Koptyug av. 4, 630090 Novosibirsk, Russian Federation

3. 

Dipartimento di Matematica, Università di Brescia, Facoltà di Ingegneria, Via Valotti 9, 25133 Brescia

Received  September 2014 Revised  February 2015 Published  December 2015

We present a recent result [23] for the free boundary problem for contact discontinuities in ideal compressible magnetohydrodynamics (MHD). They are characteristic discontinuities with no flow across the discontinuity for which the pressure, the magnetic field and the velocity are continuous whereas the density and the entropy may have a jump. Under the Rayleigh-Taylor sign condition $[\partial p/\partial N]<0$ on the jump of the normal derivative of the pressure satisfied at each point of the unperturbed contact discontinuity, we prove the well-posedness in Sobolev spaces of the linearized problem for 2D planar MHD flows. This is a necessary step to prove a local-in-time existence theorem [24] for the original nonlinear free boundary problem provided that the Rayleigh-Taylor sign condition is satisfied at each point of the initial discontinuity. The uniqueness of a solution to this problem follows already from the basic a priori estimate deduced for the linearized problem.
Citation: Alessandro Morando, Yuri Trakhinin, Paola Trebeschi. On local existence of MHD contact discontinuities. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 289-313. doi: 10.3934/dcdss.2016.9.289
References:
[1]

S. Alinhac, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels,, Comm. Partial Differential Equations, 14 (1989), 173.  doi: 10.1080/03605308908820595.  Google Scholar

[2]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations. First-order Systems and Applications,, Oxford University Press, (2007).   Google Scholar

[3]

A. Blokhin and Y. Trakhinin, Stability of strong discontinuities in fluids and MHD,, in Handbook of Mathematical Fluid Dynamics, (2002), 545.  doi: 10.1016/S1874-5792(02)80013-1.  Google Scholar

[4]

J.-F. Coulombel and P. Secchi, Nonlinear compressible vortex sheets in two space dimensions,, Ann. Sci. École Norm. Sup. (4), 41 (2008), 85.   Google Scholar

[5]

J.-F. Coulombel, A. Morando, P. Secchi and P. Trebeschi, A priori estimates for 3D incompressible current-vortex sheets,, Comm. Math. Phys., 311 (2012), 247.  doi: 10.1007/s00220-011-1340-8.  Google Scholar

[6]

D. Ebin, The equations of motion of a perfect fluid with free boundary are not well-posed,, Comm. Partial Differential Equations, 12 (1987), 1175.  doi: 10.1080/03605308708820523.  Google Scholar

[7]

J. Fang and L. Zhang, Two-dimensional magnetohydrodynamics simulations of young type Ia supernova remnants,, Mon. Not. R. Astron. Soc., 424 (2012), 2811.  doi: 10.1111/j.1365-2966.2012.21405.x.  Google Scholar

[8]

O. L. Filippova, Stability of plane MHD shock waves in an ideal gas,, Fluid Dyn., 26 (1991), 897.  doi: 10.1007/BF01056793.  Google Scholar

[9]

J. P. Goedbloed, R. Keppens and S. Poedts, Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas,, Cambridge University Press, (2010).  doi: 10.1017/CBO9781139195560.  Google Scholar

[10]

K. Ilin and Y. Trakhinin, On stability of Alfvén discontinuities,, Math. Methods Appl. Sci., 32 (2009), 307.  doi: 10.1002/mma.1039.  Google Scholar

[11]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, Comm. Pure Appl. Math., 23 (1970), 277.  doi: 10.1002/cpa.3160230304.  Google Scholar

[12]

B. Kwon, Structural conditions for full MHD equations,, Quart. Appl. Math., 67 (2009), 593.  doi: 10.1090/S0033-569X-09-01139-6.  Google Scholar

[13]

D. Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc., 18 (2005), 605.  doi: 10.1090/S0894-0347-05-00484-4.  Google Scholar

[14]

P. D. Lax, Hyperbolic systems of conservation laws. II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[15]

L. D. Landau, E. M. Lifshiz and L. P. Pitaevskii, Electrodynamics of Continuous Media,, Pergamon Press, (1984).   Google Scholar

[16]

H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary,, Ann. of Math. (2), 162 (2005), 109.  doi: 10.4007/annals.2005.162.109.  Google Scholar

[17]

H. Lindblad, Well-posedness for the motion of a compressible liquid with free surface boundary,, Comm. Math. Phys., 260 (2005), 319.  doi: 10.1007/s00220-005-1406-6.  Google Scholar

[18]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[19]

G. Métivier, Stability of multidimensional shocks,, in Advances in the Theory of Shock Waves (eds. H. Freistühler and A. Szepessy), (2001), 25.   Google Scholar

[20]

G. Métivier and K. Zumbrun, Hyperbolic boundary value problems for symmetric systems with variable multiplicities,, J. Differential Equations, 211 (2005), 61.  doi: 10.1016/j.jde.2004.06.002.  Google Scholar

[21]

A. Morando, Y. Trakhinin and P. Trebeschi, Stability of incompressible current-vortex sheets,, J. Math. Anal. Appl., 347 (2008), 502.  doi: 10.1016/j.jmaa.2008.06.002.  Google Scholar

[22]

A. Morando, Y. Trakhinin and P. Trebeschi, Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD,, Quart. Appl. Math., 72 (2014), 549.  doi: 10.1090/S0033-569X-2014-01346-7.  Google Scholar

[23]

A. Morando, Y. Trakhinin and P. Trebeschi, Well-posedness of the linearized problem for MHD contact discontinuities,, J. Differential Equations, 258 (2015), 2531.  doi: 10.1016/j.jde.2014.12.018.  Google Scholar

[24]

A. Morando, Y. Trakhinin and P. Trebeschi, Local existence of MHD contact discontinuities,, work in progress., ().   Google Scholar

[25]

P. Secchi and Y. Trakhinin, Well-posedness of the linearized plasma-vacuum interface problem,, Interface Free Bound., 15 (2013), 323.  doi: 10.4171/IFB/305.  Google Scholar

[26]

P. Secchi and Y. Trakhinin, Well-posedness of the plasma-vacuum interface problem,, Nonlinearity, 27 (2014), 105.  doi: 10.1088/0951-7715/27/1/105.  Google Scholar

[27]

Y. Trakhinin, A complete 2D stability analysis of fast MHD shocks in an ideal gas,, Comm. Math. Phys., 236 (2003), 65.  doi: 10.1007/s00220-002-0791-3.  Google Scholar

[28]

Y. Trakhinin, On existence of compressible current-vortex sheets: Variable coefficients linear analysis,, Arch. Ration. Mech. Anal., 177 (2005), 331.  doi: 10.1007/s00205-005-0364-7.  Google Scholar

[29]

Y. Trakhinin, On the existence of incompressible current-vortex sheets: Study of a linearized free boundary value problem,, Math. Methods Appl. Sci., 28 (2005), 917.  doi: 10.1002/mma.600.  Google Scholar

[30]

Y. Trakhinin, The existence of current-vortex sheets in ideal compressible magnetohydrodynamics,, Arch. Ration. Mech. Anal., 191 (2009), 245.  doi: 10.1007/s00205-008-0124-6.  Google Scholar

[31]

Y. Trakhinin, Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition,, Comm. Pure Appl. Math., 62 (2009), 1551.  doi: 10.1002/cpa.20282.  Google Scholar

[32]

Y. Trakhinin, On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD,, J. Differential Equations, 249 (2010), 2577.  doi: 10.1016/j.jde.2010.06.007.  Google Scholar

[33]

T. Yanagisawa and A. Matsumura, The fixed boundary value problems for the equations of ideal magnetohydrodynamics with a perfectly conducting wall condition,, Comm. Math. Phys., 136 (1991), 119.  doi: 10.1007/BF02096793.  Google Scholar

show all references

References:
[1]

S. Alinhac, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels,, Comm. Partial Differential Equations, 14 (1989), 173.  doi: 10.1080/03605308908820595.  Google Scholar

[2]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations. First-order Systems and Applications,, Oxford University Press, (2007).   Google Scholar

[3]

A. Blokhin and Y. Trakhinin, Stability of strong discontinuities in fluids and MHD,, in Handbook of Mathematical Fluid Dynamics, (2002), 545.  doi: 10.1016/S1874-5792(02)80013-1.  Google Scholar

[4]

J.-F. Coulombel and P. Secchi, Nonlinear compressible vortex sheets in two space dimensions,, Ann. Sci. École Norm. Sup. (4), 41 (2008), 85.   Google Scholar

[5]

J.-F. Coulombel, A. Morando, P. Secchi and P. Trebeschi, A priori estimates for 3D incompressible current-vortex sheets,, Comm. Math. Phys., 311 (2012), 247.  doi: 10.1007/s00220-011-1340-8.  Google Scholar

[6]

D. Ebin, The equations of motion of a perfect fluid with free boundary are not well-posed,, Comm. Partial Differential Equations, 12 (1987), 1175.  doi: 10.1080/03605308708820523.  Google Scholar

[7]

J. Fang and L. Zhang, Two-dimensional magnetohydrodynamics simulations of young type Ia supernova remnants,, Mon. Not. R. Astron. Soc., 424 (2012), 2811.  doi: 10.1111/j.1365-2966.2012.21405.x.  Google Scholar

[8]

O. L. Filippova, Stability of plane MHD shock waves in an ideal gas,, Fluid Dyn., 26 (1991), 897.  doi: 10.1007/BF01056793.  Google Scholar

[9]

J. P. Goedbloed, R. Keppens and S. Poedts, Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas,, Cambridge University Press, (2010).  doi: 10.1017/CBO9781139195560.  Google Scholar

[10]

K. Ilin and Y. Trakhinin, On stability of Alfvén discontinuities,, Math. Methods Appl. Sci., 32 (2009), 307.  doi: 10.1002/mma.1039.  Google Scholar

[11]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, Comm. Pure Appl. Math., 23 (1970), 277.  doi: 10.1002/cpa.3160230304.  Google Scholar

[12]

B. Kwon, Structural conditions for full MHD equations,, Quart. Appl. Math., 67 (2009), 593.  doi: 10.1090/S0033-569X-09-01139-6.  Google Scholar

[13]

D. Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc., 18 (2005), 605.  doi: 10.1090/S0894-0347-05-00484-4.  Google Scholar

[14]

P. D. Lax, Hyperbolic systems of conservation laws. II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[15]

L. D. Landau, E. M. Lifshiz and L. P. Pitaevskii, Electrodynamics of Continuous Media,, Pergamon Press, (1984).   Google Scholar

[16]

H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary,, Ann. of Math. (2), 162 (2005), 109.  doi: 10.4007/annals.2005.162.109.  Google Scholar

[17]

H. Lindblad, Well-posedness for the motion of a compressible liquid with free surface boundary,, Comm. Math. Phys., 260 (2005), 319.  doi: 10.1007/s00220-005-1406-6.  Google Scholar

[18]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[19]

G. Métivier, Stability of multidimensional shocks,, in Advances in the Theory of Shock Waves (eds. H. Freistühler and A. Szepessy), (2001), 25.   Google Scholar

[20]

G. Métivier and K. Zumbrun, Hyperbolic boundary value problems for symmetric systems with variable multiplicities,, J. Differential Equations, 211 (2005), 61.  doi: 10.1016/j.jde.2004.06.002.  Google Scholar

[21]

A. Morando, Y. Trakhinin and P. Trebeschi, Stability of incompressible current-vortex sheets,, J. Math. Anal. Appl., 347 (2008), 502.  doi: 10.1016/j.jmaa.2008.06.002.  Google Scholar

[22]

A. Morando, Y. Trakhinin and P. Trebeschi, Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD,, Quart. Appl. Math., 72 (2014), 549.  doi: 10.1090/S0033-569X-2014-01346-7.  Google Scholar

[23]

A. Morando, Y. Trakhinin and P. Trebeschi, Well-posedness of the linearized problem for MHD contact discontinuities,, J. Differential Equations, 258 (2015), 2531.  doi: 10.1016/j.jde.2014.12.018.  Google Scholar

[24]

A. Morando, Y. Trakhinin and P. Trebeschi, Local existence of MHD contact discontinuities,, work in progress., ().   Google Scholar

[25]

P. Secchi and Y. Trakhinin, Well-posedness of the linearized plasma-vacuum interface problem,, Interface Free Bound., 15 (2013), 323.  doi: 10.4171/IFB/305.  Google Scholar

[26]

P. Secchi and Y. Trakhinin, Well-posedness of the plasma-vacuum interface problem,, Nonlinearity, 27 (2014), 105.  doi: 10.1088/0951-7715/27/1/105.  Google Scholar

[27]

Y. Trakhinin, A complete 2D stability analysis of fast MHD shocks in an ideal gas,, Comm. Math. Phys., 236 (2003), 65.  doi: 10.1007/s00220-002-0791-3.  Google Scholar

[28]

Y. Trakhinin, On existence of compressible current-vortex sheets: Variable coefficients linear analysis,, Arch. Ration. Mech. Anal., 177 (2005), 331.  doi: 10.1007/s00205-005-0364-7.  Google Scholar

[29]

Y. Trakhinin, On the existence of incompressible current-vortex sheets: Study of a linearized free boundary value problem,, Math. Methods Appl. Sci., 28 (2005), 917.  doi: 10.1002/mma.600.  Google Scholar

[30]

Y. Trakhinin, The existence of current-vortex sheets in ideal compressible magnetohydrodynamics,, Arch. Ration. Mech. Anal., 191 (2009), 245.  doi: 10.1007/s00205-008-0124-6.  Google Scholar

[31]

Y. Trakhinin, Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition,, Comm. Pure Appl. Math., 62 (2009), 1551.  doi: 10.1002/cpa.20282.  Google Scholar

[32]

Y. Trakhinin, On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD,, J. Differential Equations, 249 (2010), 2577.  doi: 10.1016/j.jde.2010.06.007.  Google Scholar

[33]

T. Yanagisawa and A. Matsumura, The fixed boundary value problems for the equations of ideal magnetohydrodynamics with a perfectly conducting wall condition,, Comm. Math. Phys., 136 (1991), 119.  doi: 10.1007/BF02096793.  Google Scholar

[1]

Haiyan Yin. The stability of contact discontinuity for compressible planar magnetohydrodynamics. Kinetic & Related Models, 2017, 10 (4) : 1235-1253. doi: 10.3934/krm.2017047

[2]

Jing Wang, Feng Xie. On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2767-2784. doi: 10.3934/dcdsb.2016072

[3]

Fei Jiang, Song Jiang, Weiwei Wang. Nonlinear Rayleigh-Taylor instability for nonhomogeneous incompressible viscous magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1853-1898. doi: 10.3934/dcdss.2016076

[4]

Xumin Gu. Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition. Communications on Pure & Applied Analysis, 2019, 18 (2) : 569-602. doi: 10.3934/cpaa.2019029

[5]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[6]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[7]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055

[8]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[9]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[10]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[11]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[12]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[13]

Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345

[14]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[15]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[16]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[17]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[18]

Eugenio Aulisa, Lidia Bloshanskaya, Akif Ibragimov. Well productivity index for compressible fluids and gases. Evolution Equations & Control Theory, 2016, 5 (1) : 1-36. doi: 10.3934/eect.2016.5.1

[19]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[20]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

[Back to Top]