February  2016, 9(1): 315-342. doi: 10.3934/dcdss.2016.9.315

Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain

1. 

Department of Mathematics and Research Institute of Science and Engineering, JST CREST, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555

Received  September 2014 Revised  February 2015 Published  December 2015

In this paper, we prove the local well-posedness of the free boundary problems of Navier-Stokes equations in a general domain $\Omega\subset\mathbb{R}^N$ ($N \geq 2$). The velocity field is obtained in the maximal regularity class $W^{2,1}_{q,p}(\Omega\times(0, T)) = L_p((0, T), W^2_q(\Omega)^N) \cap W^1_p((0, T), L_q(\Omega)^N)$ ($2 < p < \infty$ and $N < q < \infty$) for any initial data satisfying certain compatibility conditions. The assumption of the domain $\Omega$ is the unique existence of solutions to the weak Dirichlet-Neumann problem as well as some uniformity of covering of the closure of $\Omega$. A bounded domain, a perturbed half space, and a perturbed layer satisfy the conditions for the domain, and therefore drop problems and ocean problems are treated in the uniform manner. Our method is based on the maximal $L_p$-$L_q$ regularity theorem of a linearized problem in a general domain.
Citation: Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315
References:
[1]

H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in $L_q$ Sobolev spaces,, Adv. Differential Equations, 10 (2005), 45.   Google Scholar

[2]

G. Allain, Small-time existence for the Navier-Stokes equations with a free surface,, Appl. Math. Optim., 16 (1987), 37.  doi: 10.1007/BF01442184.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems Vol. I Abstract Linear Theory,, Monographs in Math., (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

H. Amann, M. Hieber and G. Simonett, Bounded $H_\infty$-calculus for elliptic operators,, Differential Integral Equations, 7 (1994), 613.   Google Scholar

[5]

J. T. Beale, The initial value problem for the Navier-Stokes equations with a free boundary,, Comm. Pure Appl. Math., 34 (1981), 359.  doi: 10.1002/cpa.3160340305.  Google Scholar

[6]

J. T. Beale, Large time regularity of viscous surface waves,, Arch. Rat. Mech. Anal., 84 (1984), 307.  doi: 10.1007/BF00250586.  Google Scholar

[7]

J. T. Beale and T. Nishida, Large time behavior of viscous surface waves,, Lecture Notes in Numer. Appl. Anal., 128 (1985), 1.  doi: 10.1016/S0304-0208(08)72355-7.  Google Scholar

[8]

A. P. Calderón, Lebesgue spaces of differentiable functions and distributions,, Proc. Symp. in Pure Math., 4 (1961), 33.   Google Scholar

[9]

Y. Enomoto and Y. Shibata, On the $\mathcalR$-sectoriality and its application to some mathematical study of the viscous compressible fluids,, Funk. Ekvaj., 56 (2013), 441.  doi: 10.1619/fesi.56.441.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems,, Second edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[11]

Y. Hataya and S. Kawashima, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension,, Nonlinear Anal., 71 (2009), 2535.  doi: 10.1016/j.na.2009.05.061.  Google Scholar

[12]

Y. Hataya, A remark on Beal-Nishida's paper,, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 293.   Google Scholar

[13]

I. Sh. Mogilevskiĭ and V. A. Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder spaces of functions,, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi, (1991), 257.   Google Scholar

[14]

P. B. Mucha and W. Zajączkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion,, Applicationes Mathematicae, 27 (2000), 319.   Google Scholar

[15]

T. Nishida, Equations of fluid dynamics - free surface problems,, Comm. Pure Appl. Math., 39 (1986).  doi: 10.1002/cpa.3160390712.  Google Scholar

[16]

M. Padula and V. A. Solonnikov, On the local solvability of free boundary problem for the Navier-Stokes equations,, J. Math. Sci., 170 (2010), 522.  doi: 10.1007/s10958-010-0099-3.  Google Scholar

[17]

M. Padula and V. A. Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation,, Quad. Mat., 10 (2002), 185.   Google Scholar

[18]

H. Saito and Y. Shibata, On the global well posedness of free boundary problem for the Navier-Stokes equations with surface tension,, in preparation., ().   Google Scholar

[19]

B. Schweizer, Free boundary fluid systems in a semigroup approach and oscillatory behavior,, SIAM J. Math. Anal., 28 (1997), 1135.  doi: 10.1137/S0036141096299892.  Google Scholar

[20]

M. Schonbek and Y. Shibata, On a global well-posedness of Strong Dynamics of Incompressible Nematic Liquid Crystals in $\mathbbR^N$,, in preparation., ().   Google Scholar

[21]

Y. Shibata, On the maximal $L_p$-$L_q$ regularity of the Stokes equations and the one phase free boundary problem for the Navier-Stokes equations,, in Mathematical Analysis on the Navier-Stokes Equations and Related Topics, (2011), 185.   Google Scholar

[22]

Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal $L_p$-$L_q$ regularity class,, J. Differential Equations, 258 (2015), 4127.  doi: 10.1016/j.jde.2015.01.028.  Google Scholar

[23]

Y. Shibata, On the $\mathcalR$-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations,, to appear in the proceedings of the International Conference on Mathematical Fluid Dynamics, ().   Google Scholar

[24]

Y. Shibata and S. Shimizu, Report on a local in time solvability of free surface problems for the Navier-Stokes equations with surface tension,, Applicable Analysis, 90 (2011), 201.  doi: 10.1080/00036811003735899.  Google Scholar

[25]

V. A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface,, Zap. Nauchn. Sem. (LOMI), 152 (1986), 137.  doi: 10.1007/BF01094193.  Google Scholar

[26]

V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid,, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 1065.   Google Scholar

[27]

V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval,, Algebra i Analiz, 3 (1991), 222.   Google Scholar

[28]

V. A. Solonnikov, Lectures on evolution free boundary problems: Classical solutions,, Mathematical aspects of evolving interfaces (Funchal, (2000), 123.  doi: 10.1007/978-3-540-39189-0_4.  Google Scholar

[29]

D. Sylvester, Large time existence of small viscous surface waves without surface tension,, Commun. Partial Differential Equations, 15 (1990), 823.  doi: 10.1080/03605309908820709.  Google Scholar

[30]

N. Tanaka, Global existence of two phase non-homogeneous viscous incompressible fluid flow,, Commun. Partial Differential Equations, 18 (1993), 41.  doi: 10.1080/03605309308820921.  Google Scholar

[31]

A. Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface,, Arch. Rat. Mech. Anal., 133 (1996), 299.  doi: 10.1007/BF00375146.  Google Scholar

[32]

A. Tani and N. Tanaka, Large time existence of surface waves in incompressible viscous fluids with or without surface tension,, Arch. Rat. Mech. Anal., 130 (1995), 303.  doi: 10.1007/BF00375142.  Google Scholar

show all references

References:
[1]

H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in $L_q$ Sobolev spaces,, Adv. Differential Equations, 10 (2005), 45.   Google Scholar

[2]

G. Allain, Small-time existence for the Navier-Stokes equations with a free surface,, Appl. Math. Optim., 16 (1987), 37.  doi: 10.1007/BF01442184.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems Vol. I Abstract Linear Theory,, Monographs in Math., (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

H. Amann, M. Hieber and G. Simonett, Bounded $H_\infty$-calculus for elliptic operators,, Differential Integral Equations, 7 (1994), 613.   Google Scholar

[5]

J. T. Beale, The initial value problem for the Navier-Stokes equations with a free boundary,, Comm. Pure Appl. Math., 34 (1981), 359.  doi: 10.1002/cpa.3160340305.  Google Scholar

[6]

J. T. Beale, Large time regularity of viscous surface waves,, Arch. Rat. Mech. Anal., 84 (1984), 307.  doi: 10.1007/BF00250586.  Google Scholar

[7]

J. T. Beale and T. Nishida, Large time behavior of viscous surface waves,, Lecture Notes in Numer. Appl. Anal., 128 (1985), 1.  doi: 10.1016/S0304-0208(08)72355-7.  Google Scholar

[8]

A. P. Calderón, Lebesgue spaces of differentiable functions and distributions,, Proc. Symp. in Pure Math., 4 (1961), 33.   Google Scholar

[9]

Y. Enomoto and Y. Shibata, On the $\mathcalR$-sectoriality and its application to some mathematical study of the viscous compressible fluids,, Funk. Ekvaj., 56 (2013), 441.  doi: 10.1619/fesi.56.441.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems,, Second edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[11]

Y. Hataya and S. Kawashima, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension,, Nonlinear Anal., 71 (2009), 2535.  doi: 10.1016/j.na.2009.05.061.  Google Scholar

[12]

Y. Hataya, A remark on Beal-Nishida's paper,, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 293.   Google Scholar

[13]

I. Sh. Mogilevskiĭ and V. A. Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder spaces of functions,, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi, (1991), 257.   Google Scholar

[14]

P. B. Mucha and W. Zajączkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion,, Applicationes Mathematicae, 27 (2000), 319.   Google Scholar

[15]

T. Nishida, Equations of fluid dynamics - free surface problems,, Comm. Pure Appl. Math., 39 (1986).  doi: 10.1002/cpa.3160390712.  Google Scholar

[16]

M. Padula and V. A. Solonnikov, On the local solvability of free boundary problem for the Navier-Stokes equations,, J. Math. Sci., 170 (2010), 522.  doi: 10.1007/s10958-010-0099-3.  Google Scholar

[17]

M. Padula and V. A. Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation,, Quad. Mat., 10 (2002), 185.   Google Scholar

[18]

H. Saito and Y. Shibata, On the global well posedness of free boundary problem for the Navier-Stokes equations with surface tension,, in preparation., ().   Google Scholar

[19]

B. Schweizer, Free boundary fluid systems in a semigroup approach and oscillatory behavior,, SIAM J. Math. Anal., 28 (1997), 1135.  doi: 10.1137/S0036141096299892.  Google Scholar

[20]

M. Schonbek and Y. Shibata, On a global well-posedness of Strong Dynamics of Incompressible Nematic Liquid Crystals in $\mathbbR^N$,, in preparation., ().   Google Scholar

[21]

Y. Shibata, On the maximal $L_p$-$L_q$ regularity of the Stokes equations and the one phase free boundary problem for the Navier-Stokes equations,, in Mathematical Analysis on the Navier-Stokes Equations and Related Topics, (2011), 185.   Google Scholar

[22]

Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal $L_p$-$L_q$ regularity class,, J. Differential Equations, 258 (2015), 4127.  doi: 10.1016/j.jde.2015.01.028.  Google Scholar

[23]

Y. Shibata, On the $\mathcalR$-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations,, to appear in the proceedings of the International Conference on Mathematical Fluid Dynamics, ().   Google Scholar

[24]

Y. Shibata and S. Shimizu, Report on a local in time solvability of free surface problems for the Navier-Stokes equations with surface tension,, Applicable Analysis, 90 (2011), 201.  doi: 10.1080/00036811003735899.  Google Scholar

[25]

V. A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface,, Zap. Nauchn. Sem. (LOMI), 152 (1986), 137.  doi: 10.1007/BF01094193.  Google Scholar

[26]

V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid,, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 1065.   Google Scholar

[27]

V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval,, Algebra i Analiz, 3 (1991), 222.   Google Scholar

[28]

V. A. Solonnikov, Lectures on evolution free boundary problems: Classical solutions,, Mathematical aspects of evolving interfaces (Funchal, (2000), 123.  doi: 10.1007/978-3-540-39189-0_4.  Google Scholar

[29]

D. Sylvester, Large time existence of small viscous surface waves without surface tension,, Commun. Partial Differential Equations, 15 (1990), 823.  doi: 10.1080/03605309908820709.  Google Scholar

[30]

N. Tanaka, Global existence of two phase non-homogeneous viscous incompressible fluid flow,, Commun. Partial Differential Equations, 18 (1993), 41.  doi: 10.1080/03605309308820921.  Google Scholar

[31]

A. Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface,, Arch. Rat. Mech. Anal., 133 (1996), 299.  doi: 10.1007/BF00375146.  Google Scholar

[32]

A. Tani and N. Tanaka, Large time existence of surface waves in incompressible viscous fluids with or without surface tension,, Arch. Rat. Mech. Anal., 130 (1995), 303.  doi: 10.1007/BF00375142.  Google Scholar

[1]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[2]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[3]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[4]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[5]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[6]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[7]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

[8]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[9]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[10]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[11]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[12]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[13]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[14]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[15]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[16]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[17]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[18]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[19]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

[20]

Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]