February  2016, 9(1): 315-342. doi: 10.3934/dcdss.2016.9.315

Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain

1. 

Department of Mathematics and Research Institute of Science and Engineering, JST CREST, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555

Received  September 2014 Revised  February 2015 Published  December 2015

In this paper, we prove the local well-posedness of the free boundary problems of Navier-Stokes equations in a general domain $\Omega\subset\mathbb{R}^N$ ($N \geq 2$). The velocity field is obtained in the maximal regularity class $W^{2,1}_{q,p}(\Omega\times(0, T)) = L_p((0, T), W^2_q(\Omega)^N) \cap W^1_p((0, T), L_q(\Omega)^N)$ ($2 < p < \infty$ and $N < q < \infty$) for any initial data satisfying certain compatibility conditions. The assumption of the domain $\Omega$ is the unique existence of solutions to the weak Dirichlet-Neumann problem as well as some uniformity of covering of the closure of $\Omega$. A bounded domain, a perturbed half space, and a perturbed layer satisfy the conditions for the domain, and therefore drop problems and ocean problems are treated in the uniform manner. Our method is based on the maximal $L_p$-$L_q$ regularity theorem of a linearized problem in a general domain.
Citation: Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315
References:
[1]

H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in $L_q$ Sobolev spaces,, Adv. Differential Equations, 10 (2005), 45.   Google Scholar

[2]

G. Allain, Small-time existence for the Navier-Stokes equations with a free surface,, Appl. Math. Optim., 16 (1987), 37.  doi: 10.1007/BF01442184.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems Vol. I Abstract Linear Theory,, Monographs in Math., (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

H. Amann, M. Hieber and G. Simonett, Bounded $H_\infty$-calculus for elliptic operators,, Differential Integral Equations, 7 (1994), 613.   Google Scholar

[5]

J. T. Beale, The initial value problem for the Navier-Stokes equations with a free boundary,, Comm. Pure Appl. Math., 34 (1981), 359.  doi: 10.1002/cpa.3160340305.  Google Scholar

[6]

J. T. Beale, Large time regularity of viscous surface waves,, Arch. Rat. Mech. Anal., 84 (1984), 307.  doi: 10.1007/BF00250586.  Google Scholar

[7]

J. T. Beale and T. Nishida, Large time behavior of viscous surface waves,, Lecture Notes in Numer. Appl. Anal., 128 (1985), 1.  doi: 10.1016/S0304-0208(08)72355-7.  Google Scholar

[8]

A. P. Calderón, Lebesgue spaces of differentiable functions and distributions,, Proc. Symp. in Pure Math., 4 (1961), 33.   Google Scholar

[9]

Y. Enomoto and Y. Shibata, On the $\mathcalR$-sectoriality and its application to some mathematical study of the viscous compressible fluids,, Funk. Ekvaj., 56 (2013), 441.  doi: 10.1619/fesi.56.441.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems,, Second edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[11]

Y. Hataya and S. Kawashima, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension,, Nonlinear Anal., 71 (2009), 2535.  doi: 10.1016/j.na.2009.05.061.  Google Scholar

[12]

Y. Hataya, A remark on Beal-Nishida's paper,, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 293.   Google Scholar

[13]

I. Sh. Mogilevskiĭ and V. A. Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder spaces of functions,, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi, (1991), 257.   Google Scholar

[14]

P. B. Mucha and W. Zajączkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion,, Applicationes Mathematicae, 27 (2000), 319.   Google Scholar

[15]

T. Nishida, Equations of fluid dynamics - free surface problems,, Comm. Pure Appl. Math., 39 (1986).  doi: 10.1002/cpa.3160390712.  Google Scholar

[16]

M. Padula and V. A. Solonnikov, On the local solvability of free boundary problem for the Navier-Stokes equations,, J. Math. Sci., 170 (2010), 522.  doi: 10.1007/s10958-010-0099-3.  Google Scholar

[17]

M. Padula and V. A. Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation,, Quad. Mat., 10 (2002), 185.   Google Scholar

[18]

H. Saito and Y. Shibata, On the global well posedness of free boundary problem for the Navier-Stokes equations with surface tension,, in preparation., ().   Google Scholar

[19]

B. Schweizer, Free boundary fluid systems in a semigroup approach and oscillatory behavior,, SIAM J. Math. Anal., 28 (1997), 1135.  doi: 10.1137/S0036141096299892.  Google Scholar

[20]

M. Schonbek and Y. Shibata, On a global well-posedness of Strong Dynamics of Incompressible Nematic Liquid Crystals in $\mathbbR^N$,, in preparation., ().   Google Scholar

[21]

Y. Shibata, On the maximal $L_p$-$L_q$ regularity of the Stokes equations and the one phase free boundary problem for the Navier-Stokes equations,, in Mathematical Analysis on the Navier-Stokes Equations and Related Topics, (2011), 185.   Google Scholar

[22]

Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal $L_p$-$L_q$ regularity class,, J. Differential Equations, 258 (2015), 4127.  doi: 10.1016/j.jde.2015.01.028.  Google Scholar

[23]

Y. Shibata, On the $\mathcalR$-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations,, to appear in the proceedings of the International Conference on Mathematical Fluid Dynamics, ().   Google Scholar

[24]

Y. Shibata and S. Shimizu, Report on a local in time solvability of free surface problems for the Navier-Stokes equations with surface tension,, Applicable Analysis, 90 (2011), 201.  doi: 10.1080/00036811003735899.  Google Scholar

[25]

V. A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface,, Zap. Nauchn. Sem. (LOMI), 152 (1986), 137.  doi: 10.1007/BF01094193.  Google Scholar

[26]

V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid,, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 1065.   Google Scholar

[27]

V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval,, Algebra i Analiz, 3 (1991), 222.   Google Scholar

[28]

V. A. Solonnikov, Lectures on evolution free boundary problems: Classical solutions,, Mathematical aspects of evolving interfaces (Funchal, (2000), 123.  doi: 10.1007/978-3-540-39189-0_4.  Google Scholar

[29]

D. Sylvester, Large time existence of small viscous surface waves without surface tension,, Commun. Partial Differential Equations, 15 (1990), 823.  doi: 10.1080/03605309908820709.  Google Scholar

[30]

N. Tanaka, Global existence of two phase non-homogeneous viscous incompressible fluid flow,, Commun. Partial Differential Equations, 18 (1993), 41.  doi: 10.1080/03605309308820921.  Google Scholar

[31]

A. Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface,, Arch. Rat. Mech. Anal., 133 (1996), 299.  doi: 10.1007/BF00375146.  Google Scholar

[32]

A. Tani and N. Tanaka, Large time existence of surface waves in incompressible viscous fluids with or without surface tension,, Arch. Rat. Mech. Anal., 130 (1995), 303.  doi: 10.1007/BF00375142.  Google Scholar

show all references

References:
[1]

H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in $L_q$ Sobolev spaces,, Adv. Differential Equations, 10 (2005), 45.   Google Scholar

[2]

G. Allain, Small-time existence for the Navier-Stokes equations with a free surface,, Appl. Math. Optim., 16 (1987), 37.  doi: 10.1007/BF01442184.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems Vol. I Abstract Linear Theory,, Monographs in Math., (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

H. Amann, M. Hieber and G. Simonett, Bounded $H_\infty$-calculus for elliptic operators,, Differential Integral Equations, 7 (1994), 613.   Google Scholar

[5]

J. T. Beale, The initial value problem for the Navier-Stokes equations with a free boundary,, Comm. Pure Appl. Math., 34 (1981), 359.  doi: 10.1002/cpa.3160340305.  Google Scholar

[6]

J. T. Beale, Large time regularity of viscous surface waves,, Arch. Rat. Mech. Anal., 84 (1984), 307.  doi: 10.1007/BF00250586.  Google Scholar

[7]

J. T. Beale and T. Nishida, Large time behavior of viscous surface waves,, Lecture Notes in Numer. Appl. Anal., 128 (1985), 1.  doi: 10.1016/S0304-0208(08)72355-7.  Google Scholar

[8]

A. P. Calderón, Lebesgue spaces of differentiable functions and distributions,, Proc. Symp. in Pure Math., 4 (1961), 33.   Google Scholar

[9]

Y. Enomoto and Y. Shibata, On the $\mathcalR$-sectoriality and its application to some mathematical study of the viscous compressible fluids,, Funk. Ekvaj., 56 (2013), 441.  doi: 10.1619/fesi.56.441.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems,, Second edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[11]

Y. Hataya and S. Kawashima, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension,, Nonlinear Anal., 71 (2009), 2535.  doi: 10.1016/j.na.2009.05.061.  Google Scholar

[12]

Y. Hataya, A remark on Beal-Nishida's paper,, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 293.   Google Scholar

[13]

I. Sh. Mogilevskiĭ and V. A. Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder spaces of functions,, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi, (1991), 257.   Google Scholar

[14]

P. B. Mucha and W. Zajączkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion,, Applicationes Mathematicae, 27 (2000), 319.   Google Scholar

[15]

T. Nishida, Equations of fluid dynamics - free surface problems,, Comm. Pure Appl. Math., 39 (1986).  doi: 10.1002/cpa.3160390712.  Google Scholar

[16]

M. Padula and V. A. Solonnikov, On the local solvability of free boundary problem for the Navier-Stokes equations,, J. Math. Sci., 170 (2010), 522.  doi: 10.1007/s10958-010-0099-3.  Google Scholar

[17]

M. Padula and V. A. Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation,, Quad. Mat., 10 (2002), 185.   Google Scholar

[18]

H. Saito and Y. Shibata, On the global well posedness of free boundary problem for the Navier-Stokes equations with surface tension,, in preparation., ().   Google Scholar

[19]

B. Schweizer, Free boundary fluid systems in a semigroup approach and oscillatory behavior,, SIAM J. Math. Anal., 28 (1997), 1135.  doi: 10.1137/S0036141096299892.  Google Scholar

[20]

M. Schonbek and Y. Shibata, On a global well-posedness of Strong Dynamics of Incompressible Nematic Liquid Crystals in $\mathbbR^N$,, in preparation., ().   Google Scholar

[21]

Y. Shibata, On the maximal $L_p$-$L_q$ regularity of the Stokes equations and the one phase free boundary problem for the Navier-Stokes equations,, in Mathematical Analysis on the Navier-Stokes Equations and Related Topics, (2011), 185.   Google Scholar

[22]

Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal $L_p$-$L_q$ regularity class,, J. Differential Equations, 258 (2015), 4127.  doi: 10.1016/j.jde.2015.01.028.  Google Scholar

[23]

Y. Shibata, On the $\mathcalR$-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations,, to appear in the proceedings of the International Conference on Mathematical Fluid Dynamics, ().   Google Scholar

[24]

Y. Shibata and S. Shimizu, Report on a local in time solvability of free surface problems for the Navier-Stokes equations with surface tension,, Applicable Analysis, 90 (2011), 201.  doi: 10.1080/00036811003735899.  Google Scholar

[25]

V. A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface,, Zap. Nauchn. Sem. (LOMI), 152 (1986), 137.  doi: 10.1007/BF01094193.  Google Scholar

[26]

V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid,, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 1065.   Google Scholar

[27]

V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval,, Algebra i Analiz, 3 (1991), 222.   Google Scholar

[28]

V. A. Solonnikov, Lectures on evolution free boundary problems: Classical solutions,, Mathematical aspects of evolving interfaces (Funchal, (2000), 123.  doi: 10.1007/978-3-540-39189-0_4.  Google Scholar

[29]

D. Sylvester, Large time existence of small viscous surface waves without surface tension,, Commun. Partial Differential Equations, 15 (1990), 823.  doi: 10.1080/03605309908820709.  Google Scholar

[30]

N. Tanaka, Global existence of two phase non-homogeneous viscous incompressible fluid flow,, Commun. Partial Differential Equations, 18 (1993), 41.  doi: 10.1080/03605309308820921.  Google Scholar

[31]

A. Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface,, Arch. Rat. Mech. Anal., 133 (1996), 299.  doi: 10.1007/BF00375146.  Google Scholar

[32]

A. Tani and N. Tanaka, Large time existence of surface waves in incompressible viscous fluids with or without surface tension,, Arch. Rat. Mech. Anal., 130 (1995), 303.  doi: 10.1007/BF00375142.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[6]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[7]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[8]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[12]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[13]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[14]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[15]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (74)
  • HTML views (2)
  • Cited by (5)

Other articles
by authors

[Back to Top]