February  2016, 9(1): 33-42. doi: 10.3934/dcdss.2016.9.33

Isogeometric collocation mixed methods for rods

1. 

Dipartimento di Ingegneria Civile e Architettura, Università di Pavia, Via Ferrata 3, 27100 Pavia, Italy, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano, Italy

3. 

Institute of Applied Mechanics, TU Braunschweig, Bienroder Weg 87, 38106 Braunschweig, Germany

4. 

Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

Received  September 2014 Revised  February 2015 Published  December 2015

Isogeometric collocation mixed methods for spatial rods are presented and studied. A theoretical analysis of stability and convergence is available. The proposed schemes are locking-free, irrespective of the selected approximation spaces.
Citation: Ferdinando Auricchio, Lourenco Beirão da Veiga, Josef Kiendl, Carlo Lovadina, Alessandro Reali. Isogeometric collocation mixed methods for rods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 33-42. doi: 10.3934/dcdss.2016.9.33
References:
[1]

K. Arunakirinathar and B. D. Reddy, Mixed finite element methods for elastic rods of arbitrary geometry,, Numerische Mathematik, 64 (1993), 13.  doi: 10.1007/BF01388679.  Google Scholar

[2]

F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali and G. Sangalli, Isogeometric collocation methods,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 2075.  doi: 10.1142/S0218202510004878.  Google Scholar

[3]

F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali and G. Sangalli, Isogeometric collocation for elastostatics and explicit dynamics,, Computer Methods in Applied Mechanics and Engineering, 249 (2012), 2.  doi: 10.1016/j.cma.2012.03.026.  Google Scholar

[4]

F. Auricchio, L. Beirão da Veiga, J. Kiendl, C. Lovadina and A. Reali, Locking-free isogeometric collocation methods for spatial Timoshenko rods,, Comput. Methods Appl. Mech. Engrg., 263 (2013), 113.  doi: 10.1016/j.cma.2013.03.009.  Google Scholar

[5]

L. Beirão da Veiga, A. Buffa, J. Rivas and G. Sangalli, Some estimates for $h-p-k-$refinement in isogeometric analysis,, Numerische Mathematik, 118 (2011), 271.  doi: 10.1007/s00211-010-0338-z.  Google Scholar

[6]

L. Beirão da Veiga, C. Lovadina and A. Reali, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods,, Computer Methods in Applied Mechanics and Engineering, 241/244 (2012), 38.  doi: 10.1016/j.cma.2012.05.020.  Google Scholar

[7]

D. Chapelle, A locking-free approximation of curved rods by straight beam elements,, Numerische Mathematik, 77 (1997), 299.  doi: 10.1007/s002110050288.  Google Scholar

[8]

J. A. Cottrell, T. J. R. Hughes and Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA,, Wiley, (2009).   Google Scholar

[9]

J. A. Cottrell, A. Reali, Y. Bazilevs and T. J. R. Hughes, Isogeometric analysis of structural vibrations,, Computer Methods in Applied Mechanics and Engineering, 195 (2006), 5257.  doi: 10.1016/j.cma.2005.09.027.  Google Scholar

[10]

C. de Boor, A Practical Guide to Splines,, Springer, (2001).   Google Scholar

[11]

S. Demko, On the existence of interpolation projectors onto spline spaces,, Journal of Approximation Theory, 43 (1985), 151.  doi: 10.1016/0021-9045(85)90123-6.  Google Scholar

[12]

T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement,, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4135.  doi: 10.1016/j.cma.2004.10.008.  Google Scholar

[13]

T. J. R. Hughes, A. Reali and G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of $p$-method finite elements with $k$-method NURBS,, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 4104.  doi: 10.1016/j.cma.2008.04.006.  Google Scholar

[14]

R. W. Johnson, A B-spline collocation method for solving the incompressible Navier-Stokes equations using an ad hoc method: The Boundary Residual method,, Computers & Fluids, 34 (2005), 121.  doi: 10.1016/j.compfluid.2004.03.005.  Google Scholar

[15]

A. Reali, An isogeometric analysis approach for the study of structural vibrations,, Journal of Earthquake Engineering, 10 (2006), 1.   Google Scholar

[16]

D. Schillinger, J. A. Evans, A. Reali, M. A. Scott and T. J. R. Hughes, Isogeometric collocation methods: Cost comparison with Galerkin methods and extension to hierarchical discretizations,, Computer Methods in Applied Mechanics and Engineering, 267 (2013), 170.   Google Scholar

show all references

References:
[1]

K. Arunakirinathar and B. D. Reddy, Mixed finite element methods for elastic rods of arbitrary geometry,, Numerische Mathematik, 64 (1993), 13.  doi: 10.1007/BF01388679.  Google Scholar

[2]

F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali and G. Sangalli, Isogeometric collocation methods,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 2075.  doi: 10.1142/S0218202510004878.  Google Scholar

[3]

F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali and G. Sangalli, Isogeometric collocation for elastostatics and explicit dynamics,, Computer Methods in Applied Mechanics and Engineering, 249 (2012), 2.  doi: 10.1016/j.cma.2012.03.026.  Google Scholar

[4]

F. Auricchio, L. Beirão da Veiga, J. Kiendl, C. Lovadina and A. Reali, Locking-free isogeometric collocation methods for spatial Timoshenko rods,, Comput. Methods Appl. Mech. Engrg., 263 (2013), 113.  doi: 10.1016/j.cma.2013.03.009.  Google Scholar

[5]

L. Beirão da Veiga, A. Buffa, J. Rivas and G. Sangalli, Some estimates for $h-p-k-$refinement in isogeometric analysis,, Numerische Mathematik, 118 (2011), 271.  doi: 10.1007/s00211-010-0338-z.  Google Scholar

[6]

L. Beirão da Veiga, C. Lovadina and A. Reali, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods,, Computer Methods in Applied Mechanics and Engineering, 241/244 (2012), 38.  doi: 10.1016/j.cma.2012.05.020.  Google Scholar

[7]

D. Chapelle, A locking-free approximation of curved rods by straight beam elements,, Numerische Mathematik, 77 (1997), 299.  doi: 10.1007/s002110050288.  Google Scholar

[8]

J. A. Cottrell, T. J. R. Hughes and Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA,, Wiley, (2009).   Google Scholar

[9]

J. A. Cottrell, A. Reali, Y. Bazilevs and T. J. R. Hughes, Isogeometric analysis of structural vibrations,, Computer Methods in Applied Mechanics and Engineering, 195 (2006), 5257.  doi: 10.1016/j.cma.2005.09.027.  Google Scholar

[10]

C. de Boor, A Practical Guide to Splines,, Springer, (2001).   Google Scholar

[11]

S. Demko, On the existence of interpolation projectors onto spline spaces,, Journal of Approximation Theory, 43 (1985), 151.  doi: 10.1016/0021-9045(85)90123-6.  Google Scholar

[12]

T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement,, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4135.  doi: 10.1016/j.cma.2004.10.008.  Google Scholar

[13]

T. J. R. Hughes, A. Reali and G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of $p$-method finite elements with $k$-method NURBS,, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 4104.  doi: 10.1016/j.cma.2008.04.006.  Google Scholar

[14]

R. W. Johnson, A B-spline collocation method for solving the incompressible Navier-Stokes equations using an ad hoc method: The Boundary Residual method,, Computers & Fluids, 34 (2005), 121.  doi: 10.1016/j.compfluid.2004.03.005.  Google Scholar

[15]

A. Reali, An isogeometric analysis approach for the study of structural vibrations,, Journal of Earthquake Engineering, 10 (2006), 1.   Google Scholar

[16]

D. Schillinger, J. A. Evans, A. Reali, M. A. Scott and T. J. R. Hughes, Isogeometric collocation methods: Cost comparison with Galerkin methods and extension to hierarchical discretizations,, Computer Methods in Applied Mechanics and Engineering, 267 (2013), 170.   Google Scholar

[1]

S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577

[2]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[3]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[4]

Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Problems & Imaging, 2007, 1 (2) : 289-298. doi: 10.3934/ipi.2007.1.289

[5]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019105

[6]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[7]

Cesare Bracco, Annalisa Buffa, Carlotta Giannelli, Rafael Vázquez. Adaptive isogeometric methods with hierarchical splines: An overview. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 241-261. doi: 10.3934/dcds.2019010

[8]

Lorena Bociu, Jean-Paul Zolésio. Sensitivity analysis for a free boundary fluid-elasticity interaction. Evolution Equations & Control Theory, 2013, 2 (1) : 55-79. doi: 10.3934/eect.2013.2.55

[9]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[10]

Yong Duan, Jian-Guo Liu. Convergence analysis of the vortex blob method for the $b$-equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1995-2011. doi: 10.3934/dcds.2014.34.1995

[11]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[12]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[13]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[14]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[15]

Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317

[16]

Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002

[17]

Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

[18]

Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

[19]

Hui Liang, Hermann Brunner. Collocation methods for differential equations with piecewise linear delays. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1839-1857. doi: 10.3934/cpaa.2012.11.1839

[20]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

[Back to Top]