February  2016, 9(1): 343-362. doi: 10.3934/dcdss.2016.9.343

Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis

1. 

Uni-CV, Cabo Verde and CEMAT, IST, Universidade de Lisboa, 1049-001 Lisbon, Portugal

2. 

Department of Mathematics and CEMAT/IST, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa

3. 

Department of Mathematics and CEMAT/IST, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas 8005-139 Faro, Portugal

4. 

Dept Math and CEMAT, IST, Universidade de Lisboa, 1049-001 Lisbon, Portugal

Received  September 2014 Revised  February 2015 Published  December 2015

We study an atherosclerosis model described by a reaction-diffusion system of three equations, in one dimension, with homogeneous Neumann boundary conditions. The method of upper and lower solutions and its associated monotone iteration (the monotone iterative method) are used to establish existence, uniqueness and boundedness of global solutions for the problem. Upper and lower solutions are derived for the corresponding steady-state problem. Moreover, solutions of Cauchy problems defined for time-dependent system are presented as alternatives upper and lower solutions. The stability of constant steady-state solutions and the asymptotic behavior of the time-dependent solutions are studied.
Citation: Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343
References:
[1]

N. F. Britton, Reaction-Diffusion Equations and their Applications to Biology,, Academic Press Inc., (1986). Google Scholar

[2]

V. Calvez, A. Ebde, N. Meunier and A. Raoult, Mathematical and numerical modeling of the atherosclerotic plaque formation,, ESAIM Proceedings, 28 (2009), 1. doi: 10.1051/proc/2009036. Google Scholar

[3]

V. Calvez, J. Houot, N. Meunier, A. Raoult and G. Rusnakova, Mathematical and numerical modeling of early atherosclerotic lesions,, ESAIM Proceedings, 30 (2010), 1. doi: 10.1051/proc/2010002. Google Scholar

[4]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Springer-Verlag, (1979). Google Scholar

[5]

A. Friedman, Partial Differential Equations of Parabolic Type,, R.E. Krieger Pub. Co., (1983). Google Scholar

[6]

H. Daniel, Geometric Theory of Semilinear Parabolic Equations,, Springer-Verlag, (1981). Google Scholar

[7]

N. Filipovic, D. Nikolic, I. Saveljic, Z. Milosevic, T. Exarchos, G. Pelosi and O. Parodi, Computer simulation of three-dimensional plaque formation and progression in the coronary artery,, Elsevier, 88 (2013), 826. doi: 10.1016/j.compfluid.2013.07.006. Google Scholar

[8]

W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis- a mathematical model,, PLoS ONE, 9 (2014). doi: 10.1371/journal.pone.0090497. Google Scholar

[9]

N. El Khatib, S. Genieys and V. Volpert, Atherosclerosis initiation modeled as an inflammatory process,, Math. Model Nat. Phenom., 2 (2007), 126. doi: 10.1051/mmnp:2008022. Google Scholar

[10]

N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Mathematical modeling of atherosclerosis as an inflammatory disease,, Phil. Trans. R. Soc. A, 367 (2009), 4877. doi: 10.1098/rsta.2009.0142. Google Scholar

[11]

N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Reaction-diffusion model of atherosclerosis development,, J. Math. Biol., 65 (2012), 349. doi: 10.1007/s00285-011-0461-1. Google Scholar

[12]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces,, American Math. Society, (1996). doi: 10.1090/gsm/012. Google Scholar

[13]

O. Ladyzhenskaya, V. Solonnikov and N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type,, American Math. Soc., (1968). Google Scholar

[14]

B. Liu and D. Tang, Computer simulations of atherosclerosis plaque growth in coronary arteries,, Mol. Cell. Biomech., 7 (2010), 193. Google Scholar

[15]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992). Google Scholar

[16]

C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems,, Elsevier Science Ltd, 26 (1996), 1889. doi: 10.1016/0362-546X(95)00058-4. Google Scholar

[17]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,, Springer-Verlag, (1984). doi: 10.1007/978-1-4612-5282-5. Google Scholar

[18]

R. Ross, Atherosclerosis - an inflammatory disease,, Massachussets Medical Soc., 340 (1999), 115. Google Scholar

[19]

F. Rothe, Global Solutions of Reaction-Diffusion System,, Springer-Verlag, (1984). Google Scholar

[20]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic bounded value problems,, Indiana University Math. Journal, 21 (1972), 979. Google Scholar

[21]

T. Silva, A. Sequeira, R. Santos and J. Tiago, Mathematical modeling of atherosclerotic plaque formation coupled with a non-Newtonian model of blood flow,, Hindawi Publishing Corporation Conf. Papers in Math., 2013 (2013). doi: 10.1155/2013/405914. Google Scholar

show all references

References:
[1]

N. F. Britton, Reaction-Diffusion Equations and their Applications to Biology,, Academic Press Inc., (1986). Google Scholar

[2]

V. Calvez, A. Ebde, N. Meunier and A. Raoult, Mathematical and numerical modeling of the atherosclerotic plaque formation,, ESAIM Proceedings, 28 (2009), 1. doi: 10.1051/proc/2009036. Google Scholar

[3]

V. Calvez, J. Houot, N. Meunier, A. Raoult and G. Rusnakova, Mathematical and numerical modeling of early atherosclerotic lesions,, ESAIM Proceedings, 30 (2010), 1. doi: 10.1051/proc/2010002. Google Scholar

[4]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Springer-Verlag, (1979). Google Scholar

[5]

A. Friedman, Partial Differential Equations of Parabolic Type,, R.E. Krieger Pub. Co., (1983). Google Scholar

[6]

H. Daniel, Geometric Theory of Semilinear Parabolic Equations,, Springer-Verlag, (1981). Google Scholar

[7]

N. Filipovic, D. Nikolic, I. Saveljic, Z. Milosevic, T. Exarchos, G. Pelosi and O. Parodi, Computer simulation of three-dimensional plaque formation and progression in the coronary artery,, Elsevier, 88 (2013), 826. doi: 10.1016/j.compfluid.2013.07.006. Google Scholar

[8]

W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis- a mathematical model,, PLoS ONE, 9 (2014). doi: 10.1371/journal.pone.0090497. Google Scholar

[9]

N. El Khatib, S. Genieys and V. Volpert, Atherosclerosis initiation modeled as an inflammatory process,, Math. Model Nat. Phenom., 2 (2007), 126. doi: 10.1051/mmnp:2008022. Google Scholar

[10]

N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Mathematical modeling of atherosclerosis as an inflammatory disease,, Phil. Trans. R. Soc. A, 367 (2009), 4877. doi: 10.1098/rsta.2009.0142. Google Scholar

[11]

N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Reaction-diffusion model of atherosclerosis development,, J. Math. Biol., 65 (2012), 349. doi: 10.1007/s00285-011-0461-1. Google Scholar

[12]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces,, American Math. Society, (1996). doi: 10.1090/gsm/012. Google Scholar

[13]

O. Ladyzhenskaya, V. Solonnikov and N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type,, American Math. Soc., (1968). Google Scholar

[14]

B. Liu and D. Tang, Computer simulations of atherosclerosis plaque growth in coronary arteries,, Mol. Cell. Biomech., 7 (2010), 193. Google Scholar

[15]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992). Google Scholar

[16]

C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems,, Elsevier Science Ltd, 26 (1996), 1889. doi: 10.1016/0362-546X(95)00058-4. Google Scholar

[17]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,, Springer-Verlag, (1984). doi: 10.1007/978-1-4612-5282-5. Google Scholar

[18]

R. Ross, Atherosclerosis - an inflammatory disease,, Massachussets Medical Soc., 340 (1999), 115. Google Scholar

[19]

F. Rothe, Global Solutions of Reaction-Diffusion System,, Springer-Verlag, (1984). Google Scholar

[20]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic bounded value problems,, Indiana University Math. Journal, 21 (1972), 979. Google Scholar

[21]

T. Silva, A. Sequeira, R. Santos and J. Tiago, Mathematical modeling of atherosclerotic plaque formation coupled with a non-Newtonian model of blood flow,, Hindawi Publishing Corporation Conf. Papers in Math., 2013 (2013). doi: 10.1155/2013/405914. Google Scholar

[1]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[2]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[3]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[4]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[5]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[6]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[7]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[8]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[9]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[10]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[11]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[12]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[13]

Gaocheng Yue. Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5673-5694. doi: 10.3934/dcdsb.2019101

[14]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[15]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[16]

João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217

[17]

Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014

[18]

Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575

[19]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[20]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]