Citation: |
[1] |
E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: The case $1< p <2$, J. Math. Anal. Appl., 140 (1989), 115-135.doi: 10.1016/0022-247X(89)90098-X. |
[2] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[3] |
H. Beirão da Veiga, On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc. (JEMS), 11 (2009), 127-167.doi: 10.4171/JEMS/144. |
[4] |
H. Beirão da Veiga, On the global regularity of shear thinning flows in smooth domains, J. Math. Anal. Appl., 349 (2009), 335-360.doi: 10.1016/j.jmaa.2008.09.009. |
[5] |
H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 233-257.doi: 10.1007/s00021-008-0257-2. |
[6] |
H. Beirão da Veiga and F. Crispo, On the global $W^{2,q}$ regularity for nonlinear $N$-systems of the $p$-Laplacian type in $n$ space variables, Nonlinear Anal., 75 (2012), 4346-4354.doi: 10.1016/j.na.2012.03.021. |
[7] |
H. Beirão da Veiga and F. Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1173-1191.doi: 10.3934/dcdss.2013.6.1173. |
[8] |
L. C. Berselli, L. Diening and M. Růžička, Existence of strong solutions for incompressible fluids with shear dependent viscosities, J. Math. Fluid Mech., 12 (2010), 101-132.doi: 10.1007/s00021-008-0277-y. |
[9] |
F. Crispo, A note on the global regularity of steady flows of generalized Newtonian fluids, Port. Math., 66 (2009), 211-223.doi: 10.4171/PM/1841. |
[10] |
F. Crispo and P. Maremonti, On the higher regularity of solutions to the p-Laplacean system in the subquadratic case, Riv. Math. Univ. Parma (N.S.), 5 (2014), 39-63. |
[11] |
E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.doi: 10.1016/0362-546X(83)90061-5. |
[12] |
L. Diening, C. Ebmeyer and M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with $p$-structure, SIAM J. Numer. Anal., 45 (2007), 457-472 (electronic).doi: 10.1137/05064120X. |
[13] |
L. C. Evans, Partial Differential Equations, 2nd edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.doi: 10.1090/gsm/019. |
[14] |
L. C. Evans, A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e, J. Differential Equations, 45 (1982), 356-373.doi: 10.1016/0022-0396(82)90033-X. |
[15] |
J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858.doi: 10.1512/iumj.1983.32.32058. |
[16] |
G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.doi: 10.1016/0362-546X(88)90053-3. |
[17] |
J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes Aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[18] |
W. B. Liu and J. W. Barrett, A remark on the regularity of the solutions of the $p$-Laplacian and its application to their finite element approximation, J. Math. Anal. Appl., 178 (1993), 470-487.doi: 10.1006/jmaa.1993.1319. |
[19] |
J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p\geq2$, Adv. Differential Equations, 6 (2001), 257-302. Available from: http://projecteuclid.org/euclid.ade/1357141212. |
[20] |
J. Naumann and J. Wolf, On the interior regularity of weak solutions of degenerate elliptic systems (the case $1< p <2$), Rend. Sem. Mat. Univ. Padova, 88 (1992), 55-81. Available from: http://www.numdam.org/item?id=RSMUP_1992__88__55_0. |
[21] |
J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris, 1967. |
[22] |
L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math., 8 (1955), 649-675.doi: 10.1002/cpa.3160080414. |
[23] |
P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl. (4), 134 (1983), 241-266.doi: 10.1007/BF01773507. |
[24] |
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0. |
[25] |
K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.doi: 10.1007/BF02392316. |
[26] |
N. N. Ural'ceva, Degenerate quasilinear elliptic systems, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 184-222. |