February  2016, 9(1): 73-88. doi: 10.3934/dcdss.2016.9.73

On the concentration of entropy for scalar conservation laws

1. 

SISSA, via Bonomea 265, Trieste, I-34163, Italy, Italy

Received  September 2014 Revised  February 2015 Published  December 2015

We prove that the entropy for an $L^\infty$-solution to a scalar conservation laws with continuous initial data is concentrated on a countably $1$-rectifiable set. To prove this result we introduce the notion of Lagrangian representation of the solution and give regularity estimates on the solution.
Citation: Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73
References:
[1]

L. Ambrosio and C. De Lellis, A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton-Jacobi equations,, J. Hyperbolic Diff. Equ., 1 (2004), 813.  doi: 10.1142/S0219891604000263.  Google Scholar

[2]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws,, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1.  doi: 10.1007/PL00001406.  Google Scholar

[3]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017.  doi: 10.1080/03605307908820117.  Google Scholar

[4]

G. Bellettini, L. Bertini, M. Mariani and M. Novaga, $\Gamma$-entropy cost for scalar conservation laws,, Archive for Rational Mechanics and Analysis, 195 (2010), 261.  doi: 10.1007/s00205-008-0197-2.  Google Scholar

[5]

S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension,, Communications in Mathematical Physics, 313 (2012), 1.  doi: 10.1007/s00220-012-1480-5.  Google Scholar

[6]

S. Bianchini and L. Yu, Structure of entropy solutions to general scalar conservation laws in one space dimension,, J. Math. Anal. Appl., 428 (2015), 356.  doi: 10.1016/j.jmaa.2015.03.006.  Google Scholar

[7]

A. Bressan and P. G. LeFloch, Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws,, Indiana Univ. Math. J., 48 (1999), 43.  doi: 10.1512/iumj.1999.48.1524.  Google Scholar

[8]

A. Bressan, Hyperbolic Systems of Conservation Laws,, Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Third edition, (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[10]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[11]

C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws,, Archive for Rational Mechanics and Analysis, 170 (2003), 137.  doi: 10.1007/s00205-003-0270-9.  Google Scholar

[12]

C. De Lellis and T. Rivière, Concentration estimates for entropy measures,, Journal de Mathématiques Pures et Appliquées, 82 (2003), 1343.  doi: 10.1016/S0021-7824(03)00061-8.  Google Scholar

[13]

F. Otto, Initial-boundary value problem for a scalar conservation law,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729.   Google Scholar

[14]

D. Serre, Systems of Conservation Laws. 1,, Cambridge University Press, (1999).  doi: 10.1017/CBO9780511612374.  Google Scholar

show all references

References:
[1]

L. Ambrosio and C. De Lellis, A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton-Jacobi equations,, J. Hyperbolic Diff. Equ., 1 (2004), 813.  doi: 10.1142/S0219891604000263.  Google Scholar

[2]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws,, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1.  doi: 10.1007/PL00001406.  Google Scholar

[3]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017.  doi: 10.1080/03605307908820117.  Google Scholar

[4]

G. Bellettini, L. Bertini, M. Mariani and M. Novaga, $\Gamma$-entropy cost for scalar conservation laws,, Archive for Rational Mechanics and Analysis, 195 (2010), 261.  doi: 10.1007/s00205-008-0197-2.  Google Scholar

[5]

S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension,, Communications in Mathematical Physics, 313 (2012), 1.  doi: 10.1007/s00220-012-1480-5.  Google Scholar

[6]

S. Bianchini and L. Yu, Structure of entropy solutions to general scalar conservation laws in one space dimension,, J. Math. Anal. Appl., 428 (2015), 356.  doi: 10.1016/j.jmaa.2015.03.006.  Google Scholar

[7]

A. Bressan and P. G. LeFloch, Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws,, Indiana Univ. Math. J., 48 (1999), 43.  doi: 10.1512/iumj.1999.48.1524.  Google Scholar

[8]

A. Bressan, Hyperbolic Systems of Conservation Laws,, Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Third edition, (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[10]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[11]

C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws,, Archive for Rational Mechanics and Analysis, 170 (2003), 137.  doi: 10.1007/s00205-003-0270-9.  Google Scholar

[12]

C. De Lellis and T. Rivière, Concentration estimates for entropy measures,, Journal de Mathématiques Pures et Appliquées, 82 (2003), 1343.  doi: 10.1016/S0021-7824(03)00061-8.  Google Scholar

[13]

F. Otto, Initial-boundary value problem for a scalar conservation law,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729.   Google Scholar

[14]

D. Serre, Systems of Conservation Laws. 1,, Cambridge University Press, (1999).  doi: 10.1017/CBO9780511612374.  Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[8]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (44)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]