-
Previous Article
Parametric nonlinear PDEs with multiple solutions: A PGD approach
- DCDS-S Home
- This Issue
-
Next Article
Preface
Can the 'stick-slip' phenomenon be explained by a bifurcation in the steady sliding frictional contact problem?
1. | CNRS and UMPC Université Paris 06, Institut Jean le Rond d'Alembert, UMR 7190, 75005 Paris, France |
References:
[1] |
P. Ballard and J. Jarušek, Indentation of an elastic half-space by a rigid flat punch as a model problem for analyzing contact problems with coulomb friction,, Journal of Elasticity, 103 (2011), 15.
doi: 10.1007/s10659-010-9270-9. |
[2] |
P. Ballard, Steady sliding frictional contact problems in linear elasticity,, Journal of Elasticity, 110 (2013), 33.
doi: 10.1007/s10659-012-9381-6. |
[3] |
P. Ballard, Steady sliding frictional contact problem for an elastic half-space with a discontinuous friction coefficient and related stress singularities,, to appear in the special issue of Journal of the Mechanics and Physics of Solids in honour of Pierre Suquet, (2015). Google Scholar |
[4] |
R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem,, Society for Industrial and Applied Mathematics, (2009).
doi: 10.1137/1.9780898719000.ch1. |
[5] |
P. Hild, Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity,, The Quarterly Journal of Mechanics and Applied Mathematics, 57 (2004), 225.
doi: 10.1093/qjmam/57.2.225. |
[6] |
J. L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Volume 1,, Dunod, (1968).
|
[7] |
J. L. Lions and G. Stampacchia, Variational Inequalities,, Communications on Pure and Applied Mathematics, 20 (1967), 493.
doi: 10.1002/cpa.3160200302. |
[8] |
J. R. Rice and A. L. Ruina, Stability of steady frictional slipping,, Journal of Applied Mechanics, 50 (1983), 343.
doi: 10.1115/1.3167042. |
[9] |
F. G. Tricomi, Integral Equations,, Interscience Publishers, (1957).
|
show all references
References:
[1] |
P. Ballard and J. Jarušek, Indentation of an elastic half-space by a rigid flat punch as a model problem for analyzing contact problems with coulomb friction,, Journal of Elasticity, 103 (2011), 15.
doi: 10.1007/s10659-010-9270-9. |
[2] |
P. Ballard, Steady sliding frictional contact problems in linear elasticity,, Journal of Elasticity, 110 (2013), 33.
doi: 10.1007/s10659-012-9381-6. |
[3] |
P. Ballard, Steady sliding frictional contact problem for an elastic half-space with a discontinuous friction coefficient and related stress singularities,, to appear in the special issue of Journal of the Mechanics and Physics of Solids in honour of Pierre Suquet, (2015). Google Scholar |
[4] |
R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem,, Society for Industrial and Applied Mathematics, (2009).
doi: 10.1137/1.9780898719000.ch1. |
[5] |
P. Hild, Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity,, The Quarterly Journal of Mechanics and Applied Mathematics, 57 (2004), 225.
doi: 10.1093/qjmam/57.2.225. |
[6] |
J. L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Volume 1,, Dunod, (1968).
|
[7] |
J. L. Lions and G. Stampacchia, Variational Inequalities,, Communications on Pure and Applied Mathematics, 20 (1967), 493.
doi: 10.1002/cpa.3160200302. |
[8] |
J. R. Rice and A. L. Ruina, Stability of steady frictional slipping,, Journal of Applied Mechanics, 50 (1983), 343.
doi: 10.1115/1.3167042. |
[9] |
F. G. Tricomi, Integral Equations,, Interscience Publishers, (1957).
|
[1] |
Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117 |
[2] |
Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 |
[3] |
S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155 |
[4] |
Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206 |
[5] |
Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165 |
[6] |
Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621 |
[7] |
Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183 |
[8] |
T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675 |
[9] |
Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545 |
[10] |
Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673 |
[11] |
Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645 |
[12] |
Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261 |
[13] |
Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71 |
[14] |
Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331 |
[15] |
G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583 |
[16] |
Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1085-1104. doi: 10.3934/jimo.2017091 |
[17] |
Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733 |
[18] |
Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012 |
[19] |
Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045 |
[20] |
Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]